AGRO - MATHÉMATIQUES

Méthodes de calcul et raisonnement

2023

1. Par linéarité, il suffit de montrer la convergence de la série $\sum \frac{(\lambda x)^k}{k!}$, qui est une série exponentielle convergente.

Ainsi, pour tout $x \in \mathbb{R}$, la quantité S(x) est bien définie, et $S(x) = e^{\lambda x - \lambda}$.

2. La fonction g est dérivable sur \mathbb{R}_+ , et pour tout $x \ge 0$,

$$g'(x) = e^{-x} - xe^{-x} = e^{-x}(1-x).$$

Ainsi, la fonction g est croissante sur [0,1] et décroissante sur $[1,+\infty[$.

Elle atteint donc un maximum en 1, qui vaut $e^{-1} - 1 < 0$.

Ainsi, la fonction g est strictement négative sur \mathbb{R}_+ .

3. Supposons donc $\lambda \leq 1$.

La fonction ϕ est dérivable deux fois sur [0,1], de dérivées

$$\forall x \in [0, 1], \ \phi'(x) = \lambda f(x) - 1, \ \text{et } \phi''(x) = \lambda^2 f(x).$$

Ainsi, comme ϕ'' est strictement positive, la fonction ϕ' est strictement croissante sur [0,1]. Or $\phi'(1) = \lambda - 1 \leq 0$, donc la fonction ϕ' est strictement négative sur [0,1].

Par suite, la fonction ϕ est strictement décroissante sur [0,1].

On a alors $\phi(1) = 0$, et donc $\forall x < 1, \ \phi(x) > 0$.

1 est donc bien l'unique solution de f(x) = x.

4. Supposons $\lambda > 1$.

De même que précédemment, la fonction ϕ' est strictement croissante sur [0,1]. On a de plus $\phi'(1) = \lambda - 1 > 0$ et $\phi'(0) = \lambda e^{-\lambda} - 1 < 0$ par la question 2.

La fonction ϕ' étant continue, par le théorème de la bijection, elle s'annule donc exactement une fois sur [0,1], en α .

La fonction ϕ est donc strictement décroissante sur $[0, \alpha]$ et strictement croissante sur $[\alpha, 1]$.

On a toujours $\phi(1) = 0$, et donc nécessairement, $\phi(\alpha) < 0$. Comme $\phi(0) > 0$, par continuité de ϕ et théorème de la bijection, on a bien un unique zéro x_{λ} de ϕ entre 0 et α .

Finalement, on a bien exactement deux solutions pour l'équation $f(x) = x : x_{\lambda}$ et 1.

5. On a $\mathbb{E}(T_1) = t_1 = \mathbb{V}(T_1)$.

6. L'univers image de $T_1 + T_2$ est \mathbb{N} , et on a

$$\begin{split} \mathbb{P}(T_1 + T_2 = k) &= \sum_{i=0}^k \mathbb{P}(T_1 = i \cap T_2 = k - i) \\ &= \sum_{i=0}^k \mathbb{P}(T_1 = i) \mathbb{P}(T_2 = k - i) \quad \text{par indépendance} \\ &= \sum_{i=0}^k e^{-t_1 - t_2} \frac{t_1^i}{i!} \frac{t_2^{k - i}}{(k - i)!} \\ &= e^{-(t_1 + t_2)} \frac{1}{k!} \sum_{i=0}^k \binom{k}{i} t_1^i t_2^{k - i} \\ &= e^{-(t_1 + t_2)} \frac{(t_1 + t_2)^k}{k!} \quad \text{par binôme de Newton} \end{split}$$

Ainsi, on a $T_1 + T_2$ qui suit une loi de Poisson de paramètre $t_1 + t_2$.

- 7. Montrons par récurrence la propriété P(n) : « La variable $\sum_{k=1}^{n} T_k$ suit une loi de Poisson de paramètre $\sum_{k=1}^{n} t_k$ ».
 - La propriété P(1) est triviale.
 - Soit donc $n \in \mathbb{N}^*$. Supposons P(n).

On a alors
$$\sum_{k=1}^{n+1} T_k = \sum_{k=1}^n T_k + T_{n+1}$$
.

Par
$$P(n)$$
, on a $\sum_{k=1}^{n} T_k \hookrightarrow \bowtie \left(\sum_{k=1}^{n} t_k\right)$, et est indépendante de T_{n+1} .

Ainsi, par la question précédente, on a bien P(n+1).

Par récurrence, on a donc bien le résultat voulu.

8. La fonction a est continue sur I donc admet une primitive A.

Ainsi, l'ensemble des solutions de (E_1) est donné par

$$\left\{t\mapsto Ke^{-A(t)}\mid K\in\mathbb{R}\right\}.$$

- 9. Soit f une solution de (E_1) qui s'annule sur I. Comme $e^{-A(t)}$ est toujours strictement positive, on a donc K = 0, et donc la fonction f est nulle sur I.
- 10. La fonction g C est dérivable sur I, et pour tout $t \in I$:

$$(q-C)'(t) = q'(t) = bq(t)(q(t) - C).$$

Ainsi, g - C est bien solution de (E_3) .

11. Supposons qu'il existe t_0 tel que $g(t_0) = C$.

Alors $(g-C)(t_0) = 0$, et par la question 9, g-C est la fonction nulle : la fonction g est donc constante égale à C.

12. Z_0 étant constante égale à 1, on a donc $p_0 = 0$.

On a
$$Z_1 \hookrightarrow \triangleright(\lambda)$$
, donc $p_1 = e^{-\lambda}$.

L'ensemble $\{[Z_1 = n] \mid n \in \mathbb{N}\}$ est un système complet d'événements, donc par formule des probabilités totales, on a

$$\begin{aligned} p_2 &= \mathbb{P}\left(\sum_{k=1}^{Z_1} X_{1,k} = 0\right) \\ &= \sum_{n=0}^{+\infty} \mathbb{P}\left(\sum_{k=1}^n X_{1,k} = 0\right) \mathbb{P}(Z_1 = n) \\ &= \sum_{n=0}^{+\infty} e^{-n\lambda} e^{-\lambda} \frac{\lambda^n}{n!} \quad \text{par la question 7} \\ &= e^{-\lambda} e^{\lambda e^{-\lambda}} \quad \text{par s\'erie exponentielle} \end{aligned}$$

13. On a clairement pour tout $n \in \mathbb{N}$: $[Z_n = 0] \subseteq [Z_{n+1} = 0]$, et donc par croissance de la probabilité, $p_n \leq p_{n+1}$.

Ainsi, la suite (p_n) est croissante. Comme elle est majorée par 1, par théorème de la limite monotone, elle converge.

14. La famille $\{[Z_1 = k] \mid k \in \mathbb{N}\}$ est un système complet d'événements, et donc par formule des probabilités totales

$$p_{n+1} = \sum_{k=0}^{+\infty} \mathbb{P}_{[Z_1 = k]}(Z_{n+1} = 0) \mathbb{P}(Z_1 = k)$$
$$= \sum_{k=0}^{+\infty} p_n^k e^{-\lambda} \frac{\lambda^k}{k!}$$
$$= S(p_n)$$

15. Notons ℓ la limite de (p_n) .

Par la question précédente et continuité de S, on a donc $\ell = S(\ell)$.

- si $\lambda \leq 1$, on a vu en question 3 que l'unique point fixe de S était 1, et donc $\ell = 1$.
- si $\lambda > 1$, par la question 4, on a donc $\ell = x_{\lambda}$ ou $\ell = 1$.

On note que $p_0 \leqslant x_\lambda$; par croissance de la fonction S, on a donc $p_1 \leqslant S(x_\lambda) = x_\lambda$.

Une rapide récurrence permet alors de montrer que pour tout entier $n, p_n \leq x_{\lambda}$, ce qui exclut le cas $\ell = 1$.

On a donc dans ce cas $\lim p_n = x_\lambda$.

16. Ainsi, si $\lambda \leq 1$, la population s'éteindra presque sûrement.

Si $\lambda > 1$, elle s'éteindra avec probabilité x_{λ} , et donc pourra avec une probabilité non nulle se développer indéfiniment.

17. Supposons qu'on a une solution constante (C_1, C_2, C_3) . On a alors, en réinjectant dans (2),

$$\begin{cases} C_1(C_2 - C_3) = 0 \\ C_2(C_3 - C_1) = 0 \\ C_3(C_1 - C_2) = 0 \\ C_1 + C_2 + C_3 = 1 \end{cases}$$

La première ligne donne $C_1 = 0$ ou $C_2 = C_3$.

Si $C_1 = 0$, alors la deuxième ligne donne $C_2 = 0$ ou $C_3 = 0$, et la dernière ligne nous donne alors respectivement $C_3 = 1$ ou $C_2 = 1$.

Si $C_2 = C_3$, alors $C_2 = 0$ ou $C_1 = C_2$. Dans le premier cas, on trouve alors la solution (1,0,0), et dans le second, $C_1 = C_2 = C_3 = \frac{1}{3}$.

Finalement, les triplets solutions sont (1,0,0), (0,1,0), (0,0,1) et $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$.

18. La méthode usuelle nous donne : Spec $(M) = \{-i\sqrt{3}, 0, i\sqrt{3}\}$ avec

$$E_0(M) = \mathrm{Vect} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ E_{i\sqrt{3}}(M) = \mathrm{Vect} \begin{pmatrix} 1 \\ -\frac{1}{2} + \frac{\sqrt{3}}{2}i \\ -\frac{1}{2} - \frac{\sqrt{3}}{2}i \end{pmatrix} \ \text{et} \ E_{-i\sqrt{3}}(M) = \mathrm{Vect} \begin{pmatrix} 1 \\ -\frac{1}{2} - \frac{\sqrt{3}}{2}i \\ -\frac{1}{2} + \frac{\sqrt{3}}{2}i \end{pmatrix}.$$

19. La matrice M admettant trois valeurs propres distinctes, elle est diagonalisable, et donc on a $M = PDP^{-1}$ avec

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -\frac{1}{2} + \frac{\sqrt{3}}{2}i & -\frac{1}{2} - \frac{\sqrt{3}}{2}i \\ 1 & -\frac{1}{2} - \frac{\sqrt{3}}{2}i & -\frac{1}{2} + \frac{\sqrt{3}}{2}i \end{pmatrix} \text{ et } D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & i\sqrt{3} & 0 \\ 0 & 0 & -i\sqrt{3} \end{pmatrix}.$$

20. Supposons que $A,\ B,\ C$ existent. On a alors, en mettant au même dénominateur et en identifiant les coefficients du numérateur

$$\begin{cases}
4A + 4B + C = 0 \\
-7A - 3B - C = 0 \\
3A = 1
\end{cases}$$

On trouve alors $A = \frac{1}{3}$, B = 1 et $C = -\frac{16}{3}$.

21. L'ensemble des primitives de h est donc donné par

$$\left\{x\mapsto \frac{1}{3}\ln(x)+\ln(1-x)-\frac{4}{3}\ln(\frac{3}{4}-x)+K\mid K\in\mathbb{R}\right\}.$$

22. Par la question 11, si on avait $x_1(t_0) = \frac{3}{4}$, alors la fonction x_1 serait constante égale à $\frac{3}{4}$; or $x_1(0) < \frac{3}{4}$, on aboutit à une contradiction.

Ainsi, on a bien $x_1(t) < \frac{3}{4}$ pour tout t.

De même, si x_1 s'annulait, alors elle serait nulle sur \mathbb{R}_+ , ce qui est impossible.

On a donc bien $x_1(t) \in]0, \frac{3}{4}[$ pour tout $t \in \mathbb{R}_+$.

23. On a donc avec (4):

$$x_1'h \circ x_1 = 1$$
, donc $(H \circ x_1)' = 1$

où H est une primitive de h trouvée en 21.

On en déduit donc qu'il existe une constante K' telle que pour tout $t \in \mathbb{R}_+$, $H(x_1(t)) = t + K'$.

On a donc

$$\frac{1}{3}\left(\ln(x_1(t)) + 3\ln(1 - x_1(t)) - 4\ln(\frac{3}{4} - x)\right) + K = t + K',$$

et on retrouve la propriété demandée par propriété du logarithme, en posant D = K' - K.

24. On a donc

$$e^{3(t+D)} = \frac{x_1(t)(1-x_1(t))^3}{(x_1(t)-\frac{3}{4})^4}.$$

En passant à la limite, le terme de droite doit donc tendre vers $+\infty$.

La fonction x_1 étant bornée, on a donc nécessairement $x_1(t) \to \frac{3}{4}$.