Généralités sur les ensembles et les fonctions. Nombres complexes

1.1 Théorie naïve des ensembles

1.1.1 Généralités

On considèrera souvent dans ce cours des *ensembles*; on pourra visualiser un ensemble comme une "collection" d'objets mathématiques.

On écrira alors $x \in E$ pour indiquer que l'objet x est un des objets de la collection E, et on dira que x appartient à E.

Il y a trois façons différentes de décrire des ensembles :

• En listant explicitement ses éléments, entre accolades et séparés par des virgules ou pointsvirgules

Exemple:

• En listant ses éléments comme l'image d'un ensemble par une fonction

Exemple:

• En donnant une propriété qui caractérise ses éléments

EXEMPLE:

Un ensemble particulier, appelé *ensemble vide* et noté \emptyset , sera l'ensemble qui ne contient aucun élément. On admet qu'il est unique.

Définition 1.1

Soient *A* et *B* deux ensembles.

On dit que $\operatorname{not\'e} A \subseteq B \operatorname{si}$

On dit que *A* et *B* sont égaux s'ils sont inclus l'un dans l'autre :

1.1.2 Opérations sur les ensembles

Étant donnés des ensembles, on peut en construire d'autres avec des opérations.

Définition 1.2

Soient A et B deux ensembles inclus dans un ensemble E.

On appelle intersection de A et B, notée

l'ensemble des éléments qui sont

$$A \cap B =$$

On appelle union de A et B, notée

l'ensemble des éléments qui sont

$$A \cup B =$$

On généralisera facilement à l'intersection ou l'union de plus de deux ensembles.

Définition 1.3

Soient A et E deux ensembles, avec $A\subseteq E$. On appelle *complémentaire de A dans E*, noté l'ensemble des éléments

$$\overline{A} =$$

Si B n'est pas nécessairement inclus dans A, on note

l'ensemble des éléments

$$A \backslash B =$$

Définition 1.4

Soient *A* et *B* deux ensembles. On appelle *produit cartésien de A et B*, noté semble des

l'en-

$$A \times B =$$

De même, on généralise facilement à plus de deux ensembles.

Chapitre 1. Généralités 3

Nota : Attention à ne pas confondre le *couple* (a,b), élément d'un produit cartésien, ou l'ordre des élément est important, et la *paire* $\{a,b\}$ qui est un ensemble de deux éléments, dont l'ordre n'importe pas ; en toute généralité, on a

1.2 Généralités sur les fonctions

Les mathématiques utilisent principalement la notion de fonctions.

Définition 1.5

On appelle *application* (ou fonction) tout objet mathématique *f* défini par :

- •
- •
- •

On notera alors f(x) l'élément y de F correspondant à $x \in E$. f(x) s'appelle x, et x s'appelle un* de y.

de

On note une telle application

$$f: \begin{array}{ccc} E & \longrightarrow & F \\ x & \longmapsto & f(x) \end{array}$$

Définition 1.6

Soient E, F, G trois ensembles et $f: E \to F$ et $g: F \to G$. On appelle *composée de f et g* l'application

$$g \circ f: \begin{array}{ccc} E & \longrightarrow & G \\ x & \longmapsto & \end{array}$$

On a donc le diagramme suivant

$$E \xrightarrow{f} F$$

$$g \circ f \qquad \bigvee_{g} g$$

$$G$$

Définition 1.7

Soit $f : E \to F$ une application. Soient $A \subseteq E$ et $B \subseteq F$. Alors

^{*.} Attention, il n'est pas nécessairement unique

• on appelle *image directe* de *A* par *f* l'ensemble

$$f(A) =$$

• on appelle *image réciproque* de *B* par *f* l'ensemble

$$f^{-1}(B) =$$

On a alors trois propriétés des fonctions importantes :

Définition 1.8

Soit $f: E \to F$ une application.

- On dit que f est injective (ou que f est une injection de E dans F) si
- On dit que f est surjective (ou que f est une surjection de E dans F) si
- On dit que f est bijective (ou que f est une bijection de E dans F) si

On peut aussi caractériser la bijectivité par l'existence d'une réciproque :

Proposition 1.9

Une fonction $f: E \to F$ est bijective si et seulement s'il existe une fonction $g: F \to E$ telle que

$$f \circ g = \mathrm{id}_F$$
 et $g \circ f = \mathrm{id}_E$.

Dans ce cas, g s'appelle *réciproque* de f et se note f^{-1} .

1.3 Nombres complexes

Nous allons dans cette section rappeler quelques propriétés des nombres complexes. On admet l'existence d'un ensemble \mathbb{C} , qui contient un élément i vérifiant $i^2=-1$, et tel que

$$\forall z \in \mathbb{C}, \ \exists !a,b \in \mathbb{R}, \ z = a + ib.$$

Dans ce cas, a s'appelle partie réelle de z, notée $\Re(z)$ ou $\operatorname{Re}(z)$, et b s'appelle partie imaginaire de z, notée $\Im(z)$ ou $\operatorname{Im}(z)$.

Chapitre 1. Généralités 5

Définition 1.10

Soit z = a + ib un nombre complexe, $a, b \in \mathbb{R}$.

On appelle *conjugué de z* le nombre complexe

On appelle *module de z* le réel positif

Les nombres complexes de module 1 peuvent tous s'écrire sous la forme

z =

Définition 1.11

Dans ce cas, θ s'appelle *argument de z*. Cet argument n'est pas unique.

Pour tout nombre complexe z non nul, on appelle *argument de* z tout argument de $\frac{z}{|z|}$.

On rappelle alors les formules d'Euler et de Moivre :

Théorème 1.12

Soit $\theta \in \mathbb{R}$. Alors

$$\cos(\theta) =$$
 et (Formule d'Euler).

$$\forall n \in \mathbb{Z}, \ (\cos(\theta) + i\sin(\theta))^n =$$
 (Formule de Moivre).

Ces deux formules peuvent notamment être utilisées pour linéariser ou délinéariser des fonctions trigonométriques.

On rappelle enfin le résultat concernant la résolution d'équations du second degré à coefficients réels :

Proposition 1.13

Soient $a, b, c \in \mathbb{R}$, $a \neq 0$. Alors les solutions de l'équation d'inconnue z

$$az^2 + bz + c = 0$$

sont données par, en posant $\Delta = b^2 - 4ac$:

Signe de Δ	Solutions de l'équation
= 0	
> 0	
< 0	

Chapitre 1. Généralités 7

1.4 Exercices

Exercice 1

Soit $f : \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \frac{2x}{1 + x^2}.$$

- 1. *f* est-elle injective? surjective?
- 2. Calculer $f(\mathbb{R})$.
- 3. Montrer que f induit une bijection de [-1,1] sur [-1,1].

Exercice 2

Soient E, F, G non vides et $f: E \to F$ et $g: F \to G$. Montrer que

- Si $g \circ f$ injective alors f injective
- Si $g \circ f$ surjective alors g surjective

Exercice 3

Linéariser les expressions suivantes :

- $\sin^2(\theta)$
- $\cos^3(\theta)\sin^2(\theta)$
- $\cos^2(\theta)\sin^3(\theta)$

Exercice 4

Soit $n \ge 2$ un entier. Dans \mathbb{C} , résoudre l'équation d'inconnue z

$$(z-1)^n = (z+1)^n$$
.

Exercice 5

Soient u, v deux nombres complexes de module 1. Montrer que si 2 + uv est de module 1, alors uv = -1.

Que dire de la réciproque?

Exercice 6

Soit $\alpha = \frac{1}{\pi} \arccos(1/3)$. Le but est de montrer que α est irrationel, *i.e.* ne s'écrit pas comme une fraction d'entiers.

- 1. Calculer $e^{i\alpha\pi}$.
- 2. Montrer que α est rationnel si et seulement si $\exists n \in \mathbb{N}^*$, $(1+2i\sqrt{2})^n=3^n$.
- 3. Montrer que $(1+2i\sqrt{2})^n$ peut s'écrire $a_n+ib_n\sqrt{2}$, où a_n et b_n sont deux entiers tels que a_n-b_n n'est pas divisible par 3.
- 4. Conclure.