Rédudtion des endomorphismes

Eléments propres d’'une matrice ou d’'un endomorphisme

Dans toute cette section, E désignera un K-espace vectoriel de dimension finie .

Définition 12.1

Soient f € L(E) et A € K.

e On dit que A est une valeur propre de f si

e On dit que x € E est un vecteur propre de f associé a la valeur propre A si

e On notera E, (f) I'ensemble
Ex(f) =

appelé sous-espace propre de f associé a A.
On note alors Spec( f), appelé spectre de f 1’ensemble des valeurs propres de f. |

NoTae : On note donc que E,(f) est 'ensemble des vecteurs propres de f associés a la valeur
propre A, auxquels on ajoute 0.

On note de plus que si A n’est pas valeur propre de f, alors E;(f) = {0}.

On définit de la méme facon les éléments propres d"une matrice :

Soient A € M, (K) et A € K.
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e On dit que A est une valeur propre de A si

e On dit que X € M, (K) est une colonne propre de A associé a la valeur propre A si

e On notera E) (A) le sous-espace propre de A associé a A :

Ex(A) =

On note alors Spec(A), appelé spectre de A ’ensemble des valeurs propres de A.

_

On a alors le théoréme attendu :

Proposition 12.3

Soient f € L(E) et A la matrice de f dans une base de E. Alors :

Autrement dit, chercher les éléments propres de f revient exactement a trouver les éléments
propre de n’importe quelle matrice représentant f.

Corollaire 12.4

de méme dimension.

Deux matrices semblables ont exactement le méme spectre, et leurs sous-espaces propres sont |

Nota: Ceci nous donne une caractérisation de plus pour montrer que deux matrices ne sont pas
semblables, comme on I’avait vu pour la trace et le rang.

Proposition 12.5 — Stru€ture des sous-espaces propres

Soit f € L(E). Alors pour tout A € K, E, (f) est un sous-espace vectoriel de E. De plus,

A € Spec(f) &

Démonstration. 11 suffit de remarquer que E,(f) =

De plus, si A € Spec(f), alors O



CHAPITRE 12. REDUCTION DES ENDOMORPHISMES 153

Méthode de recherche des valeurs propres

En pratique, on utilisera la proposition suivante pour trouver des valeurs propres :

Proposition 12.6

Soit f € L(E), et soit A la matrice de f dans une base. Alors sont équivalentes :

(i) A estvaleur propre de f
(ii)

(iii) |

Méthode

Pour déterminer les valeurs propres d'un endomorphisme, on fera donc dans I'ordre :
e Ecrire la matrice A de f dans une base

e Pour un A quelconque, calculer le rang de la matrice A — Al avec la méthode de
Gauss. Attention : il faudra souvent distinguer certaines valeurs de A.

e Regarder pour quelles valeurs de A ce rang est strictement plus petit que la dimen-
sion de l'espace.

Nota: Dans la méthode du pivot, on essayera tant que possible d’échanger des lignes pour éviter
les A sur la diagonale, sauf tout en bas a droite. Si c’est impossible, il faudra alors distinguer des
valeurs de A.

Exercice: Trouver les valeurs propres de 'endomorphisme de IR défini par :

flx,y,z) = 2x+z,x+y+2zx+z).

On note qu’avec cette méthode, on trouve directement (en utilisant le théoreme du rang) la dimen-
sion des sous-espaces propres : il suffit de remplacer A par les valeurs trouvées, et d"utiliser la forme
échelonnée pour trouver le rang de A — Al,.

Cas particuliers Dans certains cas, il est plus simple de trouver les valeurs propres.

Pour une matrice 2 x 2, on pourra utiliser le directement la proposition suivante :

Proposition 12.7
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Soit A = <Z ;) une matrice. Alors

A € Spec(A) & |

Démonstration. On sait qu’une matrice 2 x 2 est inversible si et seulement si
Or le déterminant de A — A, vaut

det(A — )\Iz) =

0 1
‘ Exercice: Déterminer les valeurs propres de la matrice ( 6 1)

Pour une matrice triangulaire, on a

Proposition 12.8

Si A est une matrice triangulaire, alors ses valeurs propres sont exactement

De plus, la dimension du sous-espace propre E, (A) est inférieure ou égale |

Démonstration. On sait qu’une matrice triangulaire est inversible si et seulement si

11 suffit donc d’écrire A — Al, pour se convaincre du résultat.

De plus, si A € Spec(A) et que A apparait k fois sur la diagonale, alors A — AI, possede exac-
tement .Ona
doncrg(A — AlLy) > , et on en déduit

dim(E,(A)) <

O

Pour les matrice diagonales, le résultat reste le méme, avec une amélioration pour les dimensions
des sous-espaces propres.

Corollaire 12.9

Si A est une matrice diagonale, alors ses valeurs propres sont
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De plus, la dimension du sous-espace propre E, (A) est égale |

Somme de sous-espaces propres

p

Soient Fy, ..., F, des sous-espaces vectoriels de E. On dit que la somme Z Fy est directe” si
k=1

P
On note alors la somme @ F.
k=1

_

C’est équivalent a dire que concaténer des bases des F; donne une base de la somme.

Théoréme 12.11

Soit f € L(E).Soient Ay, ..., Ay des valeurs propres distinctes deux a deux de f. Alors la somme
P
de sous-espaces propres (P E,, (f) est une somme directe.
k=1

_

Démonstration. Soient donc pour touti x; € E,,(f) tels que x; + - - - 4+ x, = 0.

Soit P; un polyndme tel que On a alors

P+ 1) =

Comme la somme x1 + - - - x, est nulle, on en déduit . O

La somme étant directe, en concaténant des bases de chacun des sous-espaces propres, on obtient
une base de la somme. Ainsi :

+. Cette notion est hors-programme en BCPST
t. donné par le théoreme d’interpolation de Lagrange
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Corollaire 12.12

La dimension de la somme des sous-espaces propres de f est la somme des dimensions des
sous-espaces propres :

En particulier, la somme des dimensions des sous-espaces propres est inférieure ou égale a n.

F

Ainsi, chaque sous-espace propre étant de dimension au moins 1, on peut majorer le nombre de
valeurs propres :

Corollaire 12.13

valeurs propres.

Un endomorphisme de E (ou de facon équivalente, une matrice de M, (K)) possede au plus |

Corollaire 12.14

propres distinctes, alors chaque sous-espace propre est de dimension 1.

Si un endomorphisme de E (ou de fagon équivalente, une matrice de M, (K)) possede n valeurs |

-3l Diagonalisation

Le but de la recherche de valeurs propres et sous-espaces propres est de pouvoir trouver des bases
dans lesquelles les matrices sont simples, et au mieux diagonales.

Définition 12.15

Soit f € L(E).Ondit que f estdiagonalisable

Si A € M,(K), ondit que A estdiagonalisable

_

N1 Base de ve&eurs propres

Commengons par remarquer que si on a une base (ey, ..., e,) de E dans laquelle la matrice de f est
diagonale, alors les e; sont nécessairement des vecteurs propres de f.
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Réciproquement :

Proposition 12.16

Soit f € L(E). Soient Ay,...,A, des valeurs propres deux a deux distinctes de f. Alors

_

Démonstration. Soient donc yy, ..., 1, € K tels que
p
Y pexie = 0.
k=1

Comme lasomme @ E,, (f) est directe, et que p;x; € E) (f),

Comme on a choisi des vecteurs propres, donc non nuls, on obtient bien p; = 0. O

Ceci nous donne un premier critere de diagonalisabilité :

Proposition 12.17

Siun endomorphisme f admet n valeurs propres distinctes, alors

Plus précisément, une base dans laquelle la matrice de f est diagonale est constituée de vecteurs
propres pour chaque valeur propre.

Démonstration. On a donc, d’apres le résultat précédent, une famille libre de n vecteurs
propres, et donc une base de E. O

Plus généralement on utilisera le théoréme suivant :

Théoréme 12.18

Soit f € L(E). Alors sont équivalentes :
(i) f estdiagonalisable
(ii)
(iif)
(iv)

_
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Démonstration. On va faire une preuve cyclique.

e (i) = (ii) : Soit donc B une base dans laquelle la matrice D de f est diagonale.

Alors les valeurs propres de f sont exactement
,etladimension de E, (f) est exactement

Comme D a n coefficients diagonaux, on en tire donc

e (ii) = (iii) : On sait déja que la somme des sous-espaces propres de f est directe, et que
p
dim ( P E(f) | =
k=1
Cette somme directe est donc de méme dimension que E, et donc égale a E.

e (iii) = (iv) : Soient B, des bases de tous les E, (f). Alors, comme la somme est directe, la
concaténation de toutes les bases ), donne

e (iv) = (i):Soitdonc B = (ey, .. .e,) une base de vecteurs propres :

Alors
A O - 0
0 )Lz . 0
matg(f) = .
0 0 Ay
et donc

Meéthode

Soit A une matrice de M, (KK) qu’on veut, si possible, diagonaliser. Les étapes a suivre sont
donc:

e Déterminer les valeurs propres de A.
e Chercher la dimension de chacun des sous-espaces propres.

e Sila somme des dimensions vaut 7, alors la matrice est diagonalisable. Sinon, elle ne
l'est pas.

On se place dans le cas o1 la matrice est diagonalisable.
e On cherche une base de chacun des sous-espace propres.

e On concatene toutes ces bases pour en former une de E, notée B. Alors, si P = Pg_p,
on a bien
A =PpPDp!
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out D est la matrice diagonale dont les coefficients diagonaux sont les valeurs propres
de A, répétées autant de fois que la dimension du sous-espace propre associé.

ExempLE: On veut étudier la matrice

2 -1 0
A=1]1-1 0 2
-1 -2 4

e On cherche les valeurs propres de A. On échelonne donc la matrice A — Al3 :
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e On cherche donc une base de chacun des sous-espaces propres, qui sont tous de dimension
1: il suffit de trouver un vecteur propre pour chaque valeur propre.

— A =1:o0na déja échelonné la matrice A — 113. Le systéeme a résoudre est donc

On trouve alors par exemple (x,y,z) = = e;.

— A = 2:le systéme a résoudre est

On trouve par exemple (x,y,z) = = ey.

- A = 3:le systeme a résoudre est

On trouve par exemple (x,y,z) = = e3.

e La famille (e, e, €3) est donc une base de R3, et en posant

P = etD =

on a la relation

On donne le théoreme suivant, qu’on détaillera dans un autre chapitre :

Théoréme 12.19 — spectral
Soit A € M, (R) une matrice symétrique réelle. Alors |

«-W.l Applications de la diagonalisation

On a déja vu dans les chapitres précédent a quoi servait une matrice simple :

WY Calcul de puissances et d’'inverses

On a le résultat suivant, a redémontrer a chaque fois :
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Proposition 12.20

Si A = PDP~! avec P inversible, alors pour tout entier n,

A =
Si A est inversible, alors D aussi, et

]

Si D est simple, par exemple diagonale, il est simple de calculer sa puissance n-ieme. On ramene
donc un calcul de puissance a seulement deux produits matriciels.

W1 Etude de suites récurrentes linéaires

On considere une suite récurrente définie par ug, vg, wp € K et

Uyy1 = auy + bo, + cwy,
Vn € N, Upy1 = du, +ev, + fw,
Wpt1 = Uy + ho, +iwy,

Uy a b c
oua,b,cde f,ghicK. Alors,enposant X, = | v, | et A= |d e f |, onalarelation
Wy g h i

Xn+1 =

On a alors, par une récurrence immédiate

Proposition 12.21

Pourtoutn € N, X,, =

Nota: C’est en particulier utile pour les suites définies par récurrence a plusieurs termes, par
exemple
Upyp = Ally 1 + buy,.

On applique alors la méthode précédente en posant v, = u,_1, pour obtenir

Upy1 = Up
Upe1 = bu, +avy
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b

. . 1 .
et donc en utilisant la matrice A = ( a> , on obtient, en posant X, = (Z:) pour tout n,

X1 = AXy.

=W et Similitude de matrices

On a vu que deux matrices semblables ont méme rang, méme trace, méme valeurs propres et des
sous-espaces propres de méme dimension, mais que la réciproque était fausse.

En revanche, si les matrices sont diagonalisables, alors

Proposition 12.22

Si A et B sont diagonalisables, alors A et B sont semblables si et seulement si

|

Pour le sens réciproque, si elles sont diagonalisables, elles seront toutes les deux semblables a
la méme matrice diagonale. Par transitivité de la similitude, A et B seront bien semblables. [

Démonstration. On a déja vu le sens direct.
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N8 Exercices

Exercice 1

Déterminer les valeurs propres et des bases des sous-espaces propres des matrices suivantes :

12 3
1. (‘1 g) 2. (‘Z 192> 3. 10 4 5
00 6

2 1 1 2 6 2 3 1 -1
4 0 2 5 | -2 5 -1 6 0 3 0
0 0 -2 -2 3 3 -1 1 3

Exercice 2

Pour les matrices de 1’exercice précédent, dire si elles sont diagonalisable sur IR, puis sur C, et le cas
échéant, expliciter la matrice diagonale et la matrice de passage.

Exercice 3

Donner une condition nécessaire et suffisante pour qu'un endomorphisme n’ayant qu'une seule
valeur propre soit diagonalisable.

Exercice 4

Soit f un endomorphisme d’un espace vectoriel E de dimension finie 7.

1. On suppose que f o f = f (on dit alors que f est un projecteur).
Montrer que si A € R est valeur propre de f,alors A =0ou A = 1.

2. Soit P € R[X] un polynome tel que P(f) = 0.

a) Montrer que si x est vecteur propre de f associé a une valeur propre A et p € IN, alors x
est vecteur propre de f7, et préciser la valeur propre associée.

b) Montrer que si A € R est valeur propre de f, alors P(A) = 0.

Exercice 5
Soitn > 2.
Soit | € M,,(K) la matrice dont tous les coefficients valent 1.

1. Montrer que 0 est valeur propre de |, et déterminer la dimension du sous-espace propre asso-
cié.
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2. Trouver une valeur propre non nulle de ], et déterminer la dimension du sous-espace propre
associé.

3. Montrer que | est diagonalisable, et donner une matrice diagonale a laquelle | est semblable.

Exercice 6

Soit f € L(E), et soit A une valeur propre non nulle de f. Montrer que

Ex(f) € Im(f).

Exercice 7
0 -1 0o -2
Soient A = et B = .
(1 0 ) (2 0 >
Montrer que A et B, vues comme matrices réelles, ont méme rang, méme trace et méme spectre.

Qu’en est-il si on les voit comme matrices complexes ?

A et B sont-elles semblables ?

Exercice 8

Soit n > 2. Soient , b € R tels que |a| = |b|. Soit

a b ab b
b a a a

A=1a b b b € M (R)
b a b a a

1. Calculer le rang de A. En déduire que 0 € Spec(A), et la dimension de Ey(A).
2. Trouver deux vecteurs propres de A non colinéaires, associés a des valeurs propres non nulles.

3. Montrer que A est diagonalisable.

Exercice g

1. Montrer que tout polynoéme 1-périodique est constant.

R,[X] — R,[X]

2. Soitn € N, n > 3. Soit ¢ : P — (X42)P(X)—-XP(X+1) "

a) Montrer que ¢ est un endomorphisme.

b) Soit P € ker(¢). En calculant P(0) et P(—1), déterminer ker(¢).
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c) Déterminer la matrice de ¢ dans la base canonique de R, [X].

d) Calculer les valeurs propres et vecteurs propres de ¢.
k
Indication : on pourra considérer les polynomes P, = T (X +i).
i=0

Exercice 10

(i) Montrer que si u et v sont deux endomorphismes de E qui commutent, alors tout sous-espace
propre de u est stable par v, i.e.

VA € Spec(u), Vx € Ex(u), v(x) € Ex(u).

(ii) En déduire que si E est un espace vectoriel complexe de dimension finie, alors u et v ont un
vecteur propre commun.

Exercice 11

On note RN I’ensemble de suites réelles définies sur IN, et F le sous-ensemble de RN formé des
suites (U, )neN qui vérifient :
VYn € N, uyiz = 3uy1 — 2uy.

Un
Pour une telle suite, on pose pour tout entier naturel n : X;, = | ;41
Upy2

1. Déterminer une matrice M telle que pour tout entier naturel n, X, 11 = MX,.
En déduire 'expression de X, en fonction des matrices M, Xy et de I’entier naturel n.

2. a) Déterminer les valeurs propres de la matrice M et leurs sous-espaces propres associés.

b) La matrice M est-elle diagonalisable ?

3. On note f I'endomorphisme de R? canoniquement associé a M, c’est-a-dire tel que M soit la
matrice de f dans la base canonique B de R>.

a) Déterminer une base B’ = (¢}, ¢}, e:) telle que la matrice T de f dans B’ vérifie T =
1762/ €3 q

-2 00
0 1 1] etquelesvecteurs e], ¢ et ¢} aient respectivement pour premiére compo-
0 01

sante 1, 1 et 0.

b) Déterminer, pour tout entier naturel 7, I'expression de T".
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4. Soit P la matrice de passage de la base B a la base B'.
Exprimer M en fonction de T, P et P~!, puis M" en fonction des mémes matrices et de l’entier
naturel 7.

5. a) Calculer P71

b) Pour tout entier naturel n, calculer les coefficients de la premiére ligne de M" ; en déduire
I'expression de u, en fonction de uy, 11, u; et de ’entier naturel n.

Exercice 12

On pourra utiliser pour les programmes Python la fonction 1inalg.matrix_rank() du module numpy
qui permet de déterminer le rang d une famille de vecteurs.

Exemple d’utilisation de cette fonction :

import numpy as np
V. =np.array( [ [1,2,1], [2,3,2] ] )
(np.linalg.matrix_rank (V) )

Python renvoie alors la valeur : 2.

On considere la matrice :

-4 -3 -3
A=|10 2 0
6 3 5

et f 'endomorphisme de R? représenté dans la base canonique par la matrice A.

1. a) Ecrire une fonction Python prenant en arguments deux vecteurs de taille 3 et renvoyant
un booléen (True ou False) indiquant s’ils sont colinéaires.

On pourra représenter les vecteurs par des listes.
b) Ecrire une fonction Python prenant en argument un vecteur de taille 3 et renvoyant un
booléen indiquant s’il est un vecteur propre de A.
2. a) Vérifier que les vecteurs (1, —2,0), (0,1, —1) et (1,0, —1) sont des vecteurs propres de f
et préciser pour chacun la valeur propre associée.
b) L'endomorphisme f est-il diagonalisable?
3. a) Ecrire un programme Python permettant de déterminer le nombre de vecteurs propres
de A dont les coefficients sont des entiers compris entre —10 et 10 (bornes incluses).
b) Pour N un entier naturel non nul, calculer le nombre de vecteurs propres de A dont les

coefficients sont des entiers compris entre —N et N (bornes incluses).

4. Soit N un entier naturel non nul, une expérience consiste a choisir au hasard de maniére indé-
pendante N vecteurs a coefficients entiers dans [~ N; N]°.

a) Quelle est la probabilité py d’obtenir au moins un vecteurs propre de A parmi ces N
vecteurs?
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b) Quelle est la limite de N In (1 — 2(2]15,]:];)23)) lorsque N tend vers +oc0?

En déduire la limite de py quand N tend vers +co.

Exercice 13

1. On considere ¢ 'endomorphisme de R?, dont la matrice représentative dans la base canonique
est la matrice A de M3(IR) suivante :

A=

S = DN

11
21
0 3

a) Montrer que le spectre de I'endomorphisme ¢ est : Spec(¢) = {1,3}. L'endomorphisme
@ est-il diagonalisable ?

b) Onnotea; = (1,1,0),a, = (0,0,1) etaz = (1,—1,0).
Montrer que la famille B = (a3, a, a3) est une base de R3 et déterminer la matrice M de
I'endomorphisme ¢ dans la base B.

c) Déterminer une matrice carrée P telle que A = PMP~! et expliciter P! a laide de la
fonction inv de Python.
La commande inv du module 1inalg de la bibliotheque numpy permet de calculer I'inverse d une
matrice carrée de type matrix.

2. Soient f, g et h trois fonctions dérivables sur R vérifiant :

£ =2f(t) +g(5) + (1)
VieR, { g(t) = f(H)+25(H) +h(t) et F(0)=g(0)=h(0)=1.
W(t) =3h(t)

a) Déterminer I'expression de h(t) pour tout t € R, puis tracer a ’aide de Python l’allure de
la courbe représentative de h sur l'intervalle [0, 1].
o) f'(t)
b) Onnote X(t) = | g(t) | et X'(t) = | ¢'(¢)
h(t) H(t)
u(t) u'()
o(t) | etY'(t) = P71X'(t) = | '(t)
w(t) w'(t)
Vérifier quona:Vt € R, u/(t) = 3u(t) + .

Onnote Y(t) = P71X(t) =

¢) En déduire I'expression de u(t) pour tout t € R.

d) Déterminer alors I’expression de f(t) et ¢(¢) en fonction de .






