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Réduction des endomorphismes

12.1 Éléments propres d’une matrice ou d’un endomorphisme

Dans toute cette section, E désignera un K-espace vectoriel de dimension finie n.

Définition 12.1

Soient f ∈ L(E) et λ ∈ K.

• On dit que λ est une valeur propre de f si

• On dit que x ∈ E est un vecteur propre de f associé à la valeur propre λ si

• On notera Eλ( f ) l’ensemble

Eλ( f ) =

appelé sous-espace propre de f associé à λ.

On note alors Spec( f ), appelé spectre de f l’ensemble des valeurs propres de f .

Notae : On note donc que Eλ( f ) est l’ensemble des vecteurs propres de f associés à la valeur
propre λ, auxquels on ajoute 0.

On note de plus que si λ n’est pas valeur propre de f , alors Eλ( f ) = {0}.

On définit de la même façon les éléments propres d’une matrice :

Définition 12.2

Soient A ∈ Mn(K) et λ ∈ K.
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• On dit que λ est une valeur propre de A si

• On dit que X ∈ Mn(K) est une colonne propre de A associé à la valeur propre λ si

• On notera Eλ(A) le sous-espace propre de A associé à λ :

Eλ(A) =

On note alors Spec(A), appelé spectre de A l’ensemble des valeurs propres de A.

On a alors le théorème attendu :

Proposition 12.3

Soient f ∈ L(E) et A la matrice de f dans une base de E. Alors :

•

•

Autrement dit, chercher les éléments propres de f revient exactement à trouver les éléments
propre de n’importe quelle matrice représentant f .

Corollaire 12.4

Deux matrices semblables ont exactement le même spectre, et leurs sous-espaces propres sont
de même dimension.

Nota : Ceci nous donne une caractérisation de plus pour montrer que deux matrices ne sont pas
semblables, comme on l’avait vu pour la trace et le rang.

Proposition 12.5 – Structure des sous-espaces propres

Soit f ∈ L(E). Alors pour tout λ ∈ K, Eλ( f ) est un sous-espace vectoriel de E. De plus,

λ ∈ Spec( f ) ⇔

Démonstration. Il suffit de remarquer que Eλ( f ) = .

De plus, si λ ∈ Spec( f ), alors
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Méthode de recherche des valeurs propres

En pratique, on utilisera la proposition suivante pour trouver des valeurs propres :

Proposition 12.6

Soit f ∈ L(E), et soit A la matrice de f dans une base. Alors sont équivalentes :

(i) λ est valeur propre de f

(ii)

(iii)

Méthode

Pour déterminer les valeurs propres d’un endomorphisme, on fera donc dans l’ordre :

• Écrire la matrice A de f dans une base

• Pour un λ quelconque, calculer le rang de la matrice A − λIn avec la méthode de
Gauss. Attention : il faudra souvent distinguer certaines valeurs de λ.

• Regarder pour quelles valeurs de λ ce rang est strictement plus petit que la dimen-
sion de l’espace.

Nota : Dans la méthode du pivot, on essayera tant que possible d’échanger des lignes pour éviter
les λ sur la diagonale, sauf tout en bas à droite. Si c’est impossible, il faudra alors distinguer des
valeurs de λ.

Exercice : Trouver les valeurs propres de l’endomorphisme de R3 défini par :

f (x, y, z) = (2x + z, x + y + z, x + z).

On note qu’avec cette méthode, on trouve directement (en utilisant le théorème du rang) la dimen-
sion des sous-espaces propres : il suffit de remplacer λ par les valeurs trouvées, et d’utiliser la forme
échelonnée pour trouver le rang de A − λIn.

Cas particuliers Dans certains cas, il est plus simple de trouver les valeurs propres.

Pour une matrice 2 × 2, on pourra utiliser le directement la proposition suivante :

Proposition 12.7
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Soit A =

 
a c
b d

!
une matrice. Alors

λ ∈ Spec(A) ⇔

Démonstration. On sait qu’une matrice 2 × 2 est inversible si et seulement si
Or le déterminant de A − λI2 vaut

det(A−λI2) =

Exercice : Déterminer les valeurs propres de la matrice

 
0 1
6 −1

!

Pour une matrice triangulaire, on a

Proposition 12.8

Si A est une matrice triangulaire, alors ses valeurs propres sont exactement

De plus, la dimension du sous-espace propre Eλ(A) est inférieure ou égale

Démonstration. On sait qu’une matrice triangulaire est inversible si et seulement si
.

Il suffit donc d’écrire A − λIn pour se convaincre du résultat.

De plus, si λ ∈ Spec(A) et que λ apparaît k fois sur la diagonale, alors A − λIn possède exac-
tement . On a
donc rg(A − λIn) ⩾ , et on en déduit

dim(Eλ(A)) ⩽

Pour les matrice diagonales, le résultat reste le même, avec une amélioration pour les dimensions
des sous-espaces propres.

Corollaire 12.9

Si A est une matrice diagonale, alors ses valeurs propres sont
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De plus, la dimension du sous-espace propre Eλ(A) est égale

12.2 Somme de sous-espaces propres

Définition 12.10

Soient F1, . . . , Fp des sous-espaces vectoriels de E. On dit que la somme
p

∑
k=1

Fk est directe * si

On note alors la somme
pM

k=1

Fk.

C’est équivalent à dire que concaténer des bases des Fi donne une base de la somme.

Théorème 12.11

Soit f ∈ L(E). Soient λ1, . . . , λp des valeurs propres distinctes deux à deux de f . Alors la somme

de sous-espaces propres
pM

k=1

Eλk( f ) est une somme directe.

Démonstration. Soient donc pour tout i xi ∈ Eλi( f ) tels que x1 + · · ·+ xp = 0.

Soit Pi un polynôme † tel que On a alors

Pi( f )(x1 + · · ·+ xp) =

=

=

Comme la somme x1 + · · · xp est nulle, on en déduit .

La somme étant directe, en concaténant des bases de chacun des sous-espaces propres, on obtient
une base de la somme. Ainsi :

*. Cette notion est hors-programme en BCPST
†. donné par le théorème d’interpolation de Lagrange
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Corollaire 12.12

La dimension de la somme des sous-espaces propres de f est la somme des dimensions des
sous-espaces propres :

En particulier, la somme des dimensions des sous-espaces propres est inférieure ou égale à n.

Ainsi, chaque sous-espace propre étant de dimension au moins 1, on peut majorer le nombre de
valeurs propres :

Corollaire 12.13

Un endomorphisme de E (ou de façon équivalente, une matrice de Mn(K)) possède au plus
valeurs propres.

Corollaire 12.14

Si un endomorphisme de E (ou de façon équivalente, une matrice de Mn(K)) possède n valeurs
propres distinctes, alors chaque sous-espace propre est de dimension 1.

12.3 Diagonalisation

Le but de la recherche de valeurs propres et sous-espaces propres est de pouvoir trouver des bases
dans lesquelles les matrices sont simples, et au mieux diagonales.

Définition 12.15

Soit f ∈ L(E). On dit que f est diagonalisable

Si A ∈ Mn(K), on dit que A est diagonalisable

12.3.1 Base de vecteurs propres

Commençons par remarquer que si on a une base (e1, . . . , en) de E dans laquelle la matrice de f est
diagonale, alors les ei sont nécessairement des vecteurs propres de f .
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Réciproquement :

Proposition 12.16

Soit f ∈ L(E). Soient λ1, . . . , λp des valeurs propres deux à deux distinctes de f . Alors

Démonstration. Soient donc µ1, . . . , µp ∈ K tels que

p

∑
k=1

µkxk = 0.

Comme la somme
L

Eλk( f ) est directe, et que µixi ∈ Eλi( f ),

Comme on a choisi des vecteurs propres, donc non nuls, on obtient bien µi = 0.

Ceci nous donne un premier critère de diagonalisabilité :

Proposition 12.17

Si un endomorphisme f admet n valeurs propres distinctes, alors

Plus précisément, une base dans laquelle la matrice de f est diagonale est constituée de vecteurs
propres pour chaque valeur propre.

Démonstration. On a donc, d’après le résultat précédent, une famille libre de n vecteurs
propres, et donc une base de E.

Plus généralement on utilisera le théorème suivant :

Théorème 12.18

Soit f ∈ L(E). Alors sont équivalentes :

(i) f est diagonalisable

(ii)

(iii)

(iv)
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Démonstration. On va faire une preuve cyclique.

• (i) ⇒ (ii) : Soit donc B une base dans laquelle la matrice D de f est diagonale.

Alors les valeurs propres de f sont exactement
, et la dimension de Eλ( f ) est exactement

Comme D a n coefficients diagonaux, on en tire donc

• (ii) ⇒ (iii) : On sait déjà que la somme des sous-espaces propres de f est directe, et que

dim

 pM

k=1

Eλk( f )

!
=

Cette somme directe est donc de même dimension que E, et donc égale à E.

• (iii) ⇒ (iv) : Soient Bλ des bases de tous les Eλ( f ). Alors, comme la somme est directe, la
concaténation de toutes les bases Bλ donne

• (iv) ⇒ (i) : Soit donc B = (e1, . . . en) une base de vecteurs propres :
Alors

matB( f ) =




λ1 0 · · · 0

0 λ2
. . . 0

...
. . . . . .

...

0
... 0 λn




.

et donc

Méthode

Soit A une matrice de Mn(K) qu’on veut, si possible, diagonaliser. Les étapes à suivre sont
donc :

• Déterminer les valeurs propres de A.

• Chercher la dimension de chacun des sous-espaces propres.

• Si la somme des dimensions vaut n, alors la matrice est diagonalisable. Sinon, elle ne
l’est pas.

On se place dans le cas où la matrice est diagonalisable.

• On cherche une base de chacun des sous-espace propres.

• On concatène toutes ces bases pour en former une de E, notée B. Alors, si P = PBc ,B ,
on a bien

A = PDP−1
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où D est la matrice diagonale dont les coefficients diagonaux sont les valeurs propres
de A, répétées autant de fois que la dimension du sous-espace propre associé.

Exemple : On veut étudier la matrice

A =




2 −1 0
−1 0 2
−1 −2 4




• On cherche les valeurs propres de A. On échelonne donc la matrice A − λI3 :
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• On cherche donc une base de chacun des sous-espaces propres, qui sont tous de dimension
1 : il suffit de trouver un vecteur propre pour chaque valeur propre.

– λ = 1 : on a déjà échelonné la matrice A − 1I3. Le système à résoudre est donc

On trouve alors par exemple (x, y, z) = = e1.

– λ = 2 : le système à résoudre est

On trouve par exemple (x, y, z) = = e2.

– λ = 3 : le système à résoudre est

On trouve par exemple (x, y, z) = = e3.

• La famille (e1, e2, e3) est donc une base de R3, et en posant

P = et D =

on a la relation

On donne le théorème suivant, qu’on détaillera dans un autre chapitre :

Théorème 12.19 – spectral

Soit A ∈ Mn(R) une matrice symétrique réelle. Alors

12.4 Applications de la diagonalisation

On a déjà vu dans les chapitres précédent à quoi servait une matrice simple :

12.4.1 Calcul de puissances et d’inverses

On a le résultat suivant, à redémontrer à chaque fois :
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Proposition 12.20

Si A = PDP−1 avec P inversible, alors pour tout entier n,

An =

Si A est inversible, alors D aussi, et

A−1 =

Si D est simple, par exemple diagonale, il est simple de calculer sa puissance n-ième. On ramène
donc un calcul de puissance à seulement deux produits matriciels.

12.4.2 Étude de suites récurrentes linéaires

On considère une suite récurrente définie par u0, v0, w0 ∈ K et

∀n ∈ N,





un+1 = aun + bvn + cwn

vn+1 = dun + evn + f wn

wn+1 = gun + hvn + iwn

où a, b, c, d, e, f , g, h, i ∈ K. Alors, en posant Xn =




un

vn

wn


 et A =




a b c
d e f
g h i


, on a la relation

Xn+1 =

On a alors, par une récurrence immédiate

Proposition 12.21

Pour tout n ∈ N, Xn = .

Nota : C’est en particulier utile pour les suites définies par récurrence à plusieurs termes, par
exemple

un+2 = aun+1 + bun.

On applique alors la méthode précédente en posant vn = un+1, pour obtenir
(

un+1 = vn

vn+1 = bun + avn
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et donc en utilisant la matrice A =

 
0 1
b a

!
, on obtient, en posant Xn = (un

vn
) pour tout n,

Xn+1 = AXn.

12.4.3 Similitude de matrices

On a vu que deux matrices semblables ont même rang, même trace, même valeurs propres et des
sous-espaces propres de même dimension, mais que la réciproque était fausse.

En revanche, si les matrices sont diagonalisables, alors

Proposition 12.22

Si A et B sont diagonalisables, alors A et B sont semblables si et seulement si

Démonstration. On a déjà vu le sens direct.

Pour le sens réciproque, si elles sont diagonalisables, elles seront toutes les deux semblables à
la même matrice diagonale. Par transitivité de la similitude, A et B seront bien semblables.
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12.5 Exercices

Exercice 1

Déterminer les valeurs propres et des bases des sous-espaces propres des matrices suivantes :

 
−1 4
−1 3

!
1.

 
−5 12
−4 9

!
2.




1 2 3
0 4 5
0 0 6


3.



−2 1 1
0 2 4
0 0 −2


4.



−2 6 2
−2 5 −1
−2 3 3


5.




3 1 −1
0 3 0
−1 1 3


6.

Exercice 2

Pour les matrices de l’exercice précédent, dire si elles sont diagonalisable sur R, puis sur C, et le cas
échéant, expliciter la matrice diagonale et la matrice de passage.

Exercice 3

Donner une condition nécessaire et suffisante pour qu’un endomorphisme n’ayant qu’une seule
valeur propre soit diagonalisable.

Exercice 4

Soit f un endomorphisme d’un espace vectoriel E de dimension finie n.

1. On suppose que f ◦ f = f (on dit alors que f est un projecteur).

Montrer que si λ ∈ R est valeur propre de f , alors λ = 0 ou λ = 1.

2. Soit P ∈ R[X] un polynôme tel que P( f ) = 0.

a) Montrer que si x est vecteur propre de f associé à une valeur propre λ et p ∈ N, alors x
est vecteur propre de f p, et préciser la valeur propre associée.

b) Montrer que si λ ∈ R est valeur propre de f , alors P(λ) = 0.

Exercice 5

Soit n ⩾ 2.

Soit J ∈ Mn(K) la matrice dont tous les coefficients valent 1.

1. Montrer que 0 est valeur propre de J, et déterminer la dimension du sous-espace propre asso-
cié.
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2. Trouver une valeur propre non nulle de J, et déterminer la dimension du sous-espace propre
associé.

3. Montrer que J est diagonalisable, et donner une matrice diagonale à laquelle J est semblable.

Exercice 6

Soit f ∈ L(E), et soit λ une valeur propre non nulle de f . Montrer que

Eλ( f ) ⊆ Im( f ).

Exercice 7

Soient A =

 
0 −1
1 0

!
et B =

 
0 −2
2 0

!
.

Montrer que A et B, vues comme matrices réelles, ont même rang, même trace et même spectre.

Qu’en est-il si on les voit comme matrices complexes?

A et B sont-elles semblables?

Exercice 8

Soit n ⩾ 2. Soient , b ∈ R tels que |a| , |b|. Soit

A =




a b a b · · · b
b a b a · · · a
a b a b · · · b
...

...
...

...
. . .

...
b a b a · · · a




∈ M2n(R)

1. Calculer le rang de A. En déduire que 0 ∈ Spec(A), et la dimension de E0(A).

2. Trouver deux vecteurs propres de A non colinéaires, associés à des valeurs propres non nulles.

3. Montrer que A est diagonalisable.

Exercice 9

1. Montrer que tout polynôme 1-périodique est constant.

2. Soit n ∈ N, n ⩾ 3. Soit φ : Rn[X] −→ Rn[X]
P 7−→ (X + 2)P(X)− XP(X + 1) .

a) Montrer que φ est un endomorphisme.

b) Soit P ∈ ker(φ). En calculant P(0) et P(−1), déterminer ker(φ).
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c) Déterminer la matrice de φ dans la base canonique de Rn[X].

d) Calculer les valeurs propres et vecteurs propres de φ.

Indication : on pourra considérer les polynômes Pk =
k

∏
i=0

(X + i).

Exercice 10

(i) Montrer que si u et v sont deux endomorphismes de E qui commutent, alors tout sous-espace
propre de u est stable par v, i.e.

∀λ ∈ Spec(u), ∀x ∈ Eλ(u), v(x) ∈ Eλ(u).

(ii) En déduire que si E est un espace vectoriel complexe de dimension finie, alors u et v ont un
vecteur propre commun.

Exercice 11

On note RN l’ensemble de suites réelles définies sur N, et F le sous-ensemble de RN formé des
suites (un)n∈N qui vérifient :

∀n ∈ N, un+3 = 3un+1 − 2un.

Pour une telle suite, on pose pour tout entier naturel n : Xn =




un

un+1

un+2


.

1. Déterminer une matrice M telle que pour tout entier naturel n, Xn+1 = MXn.

En déduire l’expression de Xn en fonction des matrices M, X0 et de l’entier naturel n.

2. a) Déterminer les valeurs propres de la matrice M et leurs sous-espaces propres associés.

b) La matrice M est-elle diagonalisable?

3. On note f l’endomorphisme de R3 canoniquement associé à M, c’est-à-dire tel que M soit la
matrice de f dans la base canonique B de R3.

a) Déterminer une base B′ = (e′1, e′2, e′3) telle que la matrice T de f dans B′ vérifie T =

−2 0 0
0 1 1
0 0 1


 et que les vecteurs e′1, e′2 et e′3 aient respectivement pour première compo-

sante 1, 1 et 0.

b) Déterminer, pour tout entier naturel n, l’expression de Tn.



166 Chapitre 12. Réduction des endomorphismes

4. Soit P la matrice de passage de la base B à la base B′.

Exprimer M en fonction de T, P et P−1, puis Mn en fonction des mêmes matrices et de l’entier
naturel n.

5. a) Calculer P−1.

b) Pour tout entier naturel n, calculer les coefficients de la première ligne de Mn ; en déduire
l’expression de un en fonction de u0, u1, u2 et de l’entier naturel n.

Exercice 12

On pourra utiliser pour les programmes Python la fonction linalg.matrix_rank() du module numpy
qui permet de déterminer le rang d’une famille de vecteurs.

Exemple d’utilisation de cette fonction :

1 import numpy as np
2 V = np.array( [ [1,2,1], [2,3,2] ] )
3 print(np.linalg.matrix_rank(V) )
4

Python renvoie alors la valeur : 2.

On considère la matrice :

A =



−4 −3 −3
0 2 0
6 3 5




et f l’endomorphisme de R3 représenté dans la base canonique par la matrice A.

1. a) Écrire une fonction Python prenant en arguments deux vecteurs de taille 3 et renvoyant
un booléen (True ou False) indiquant s’ils sont colinéaires.

On pourra représenter les vecteurs par des listes.

b) Écrire une fonction Python prenant en argument un vecteur de taille 3 et renvoyant un
booléen indiquant s’il est un vecteur propre de A.

2. a) Vérifier que les vecteurs (1,−2, 0), (0, 1,−1) et (1, 0,−1) sont des vecteurs propres de f
et préciser pour chacun la valeur propre associée.

b) L’endomorphisme f est-il diagonalisable?

3. a) Écrire un programme Python permettant de déterminer le nombre de vecteurs propres
de A dont les coefficients sont des entiers compris entre −10 et 10 (bornes incluses).

b) Pour N un entier naturel non nul, calculer le nombre de vecteurs propres de A dont les
coefficients sont des entiers compris entre −N et N (bornes incluses).

4. Soit N un entier naturel non nul, une expérience consiste à choisir au hasard de manière indé-
pendante N vecteurs à coefficients entiers dans [−N; N]3.

a) Quelle est la probabilité pN d’obtenir au moins un vecteurs propre de A parmi ces N
vecteurs?
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b) Quelle est la limite de N ln
�

1 − 2N(N+2)
(2N+1)3

�
lorsque N tend vers +∞ ?

En déduire la limite de pN quand N tend vers +∞.

Exercice 13

1. On considère φ l’endomorphisme de R3, dont la matrice représentative dans la base canonique
est la matrice A de M3(R) suivante :

A =




2 1 1
1 2 1
0 0 3


 .

a) Montrer que le spectre de l’endomorphisme φ est : Spec(φ) = {1, 3}. L’endomorphisme
φ est-il diagonalisable?

b) On note a1 = (1, 1, 0), a2 = (0, 0, 1) et a3 = (1,−1, 0).

Montrer que la famille B = (a1, a2, a3) est une base de R3 et déterminer la matrice M de
l’endomorphisme φ dans la base B.

c) Déterminer une matrice carrée P telle que A = PMP−1 et expliciter P−1 à l’aide de la
fonction inv de Python.

La commande inv du module linalg de la bibliothèque numpy permet de calculer l’inverse d’une
matrice carrée de type matrix.

2. Soient f , g et h trois fonctions dérivables sur R vérifiant :

∀t ∈ R,





f ′(t) = 2 f (t) + g(t) + h(t)
g′(t) = f (t) + 2g(t) + h(t)
h′(t) = 3h(t)

et f (0) = g(0) = h(0) = 1.

a) Déterminer l’expression de h(t) pour tout t ∈ R, puis tracer à l’aide de Python l’allure de
la courbe représentative de h sur l’intervalle [0, 1].

b) On note X(t) =




f (t)
g(t)
h(t)


 et X′(t) =




f ′(t)
g′(t)
h′(t)


.

On note Y(t) = P−1X(t) =




u(t)
v(t)
w(t)


 et Y′(t) = P−1X′(t) =




u′(t)
v′(t)
w′(t)


.

Vérifier qu’on a : ∀t ∈ R, u′(t) = 3u(t) + e3t.

c) En déduire l’expression de u(t) pour tout t ∈ R.

d) Déterminer alors l’expression de f (t) et g(t) en fonction de t.




