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Couples de variables aléatoires

13.1 Séries doubles

On aura besoin dans la suite de séries doubles.

Définition 13.1

Soit (un,p)n,p∈N une suite double de réels. On dit que cette suite double est sommable si :

•

•

Dans ce cas, la somme de cette seconde série est appelée somme de la série double et est notée
∑

(n,p)∈N2
un,p.

Dans certain cas particulier, on peut alors intervertir les sommes :

Théorème 13.2 – de Fubini

Soit (un,p)n,p∈N une suite double de réels. On suppose que pour tous n, p ∈ N, un,p ⩾ 0. Alors
cette suite double est sommable si et seulement si une des conditions suivantes est vérifiée :

• Pour tout n ∈ N, la série ∑
p∈N

un,p converge et la série ∑
n∈N

∞
∑

p=0
un,p converge

• Pour tout p ∈ N, la série ∑
n∈N

un,p converge et la série ∑
p∈N

∞
∑

n=0
un,p converge

Dans ce cas, on a alors

∑
(n,p)∈N2

un,p =

169
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Exemple : On veut montrer que la suite (ui,j)i,j⩾2 définie par ui,j =
1
ij est sommable.

• Soit i ⩾ 2. Alors la série ∑ 1
ij converge comme série géométrique, et on a

∞

∑
j=2

1
ij =

• La série ∑ 1
i(i−1) converge comme série téléscopique, et on a

∞

∑
i=2

1
i(i − 1)

= .

Finalement, la suite double est sommable, et

∞

∑
i=2

∞

∑
j=2

1
ij =

∞

∑
j=2

∞

∑
i=2

1
ij = .

13.2 Généralités sur les couples de vecteurs aléatoires

Dans cette section, on fixe un espace probabilisé (Ω,A, P), et on considère deux variables aléa-
toires X et Y. On veut savoir comment caractériser le comportement de ces deux variables aléatoires
conjointement.

Définition 13.3

On appelle couple des variables aléatoires X et Y, noté (X, Y) l’application

Définition 13.4

On appelle tribu associée au couple (X, Y) la plus petite tribu contenant tous les événements

On la note A(X,Y)

Définition 13.5

On appelle loi du couple aléatoire (X, Y) la donnée de fonction F(X,Y) : R2 → R, appelée fonction
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de répartition conjointe, définie par

On dira donc que deux couples aléatoires suivent la même loi conjointe s’ils ont les mêmes fonctions
de répartitions conjointes.

On a le théorème (admis) suivant

Théorème 13.6

Soient X1, Y1, X2, Y2 quatre variables aléatoires. Soit g ∈ C0(R2, R).

Si les couples (X1, Y1) et (X2, Y2) ont la même loi, alors

Exemple : On admet que la fonction (x, y) 7→ x + y est continue. Alors si deux couples (X1, Y1)

et (X2, Y2) ont la même loi, les variables aléatoires X1 + Y1 et X2 + Y2 ont la même loi.

13.3 Couples de variables aléatoires discrètes

Dans cette section, X et Y sont deux variables aléatoires discrètes. On note {xi | i ∈ I} (resp. {yj |
j ∈ J}) l’image de X (resp. Y).

D’après la définition, la loi de (X, Y) est entièrement déterminée par la donnée de

∀i ∈ I, ∀j ∈ J, pi,j =

Dans le cas où X et Y sont finies, on pourra donc représenter la loi conjointe sous forme d’un ta-
bleau :

(X, Y)
Valeurs de Y

y1 y2 · · · yp

V
al

eu
rs

de
X

x1 p1,1 p1,2 · · · p1,p

x2 p2,1 p2,2 · · · p2,p

...
...

...
. . .

...

xn pn,1 pn,2 · · · pn,p
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Exercice : On lance simultanément deux dés. On note X le plus petit des deux dés, et Y le plus
grand. Déterminer la loi conjointe de (X, Y).

Réciproquement :

Proposition 13.7

Une suite double (pi,j)i∈I,j∈J est la loi conjointe d’un couple aléatoire discret si et seulement si

•

•

Démonstration. Le sens direct est facile : les pi,j étant des probabilités, ils sont forcément po-
sitifs. De plus, les événements (X = xi) ∩ (Y = yj) forment un système complet, et donc la
somme de leurs probabilités vaut 1.

Le sens réciproque est admis.

Définition 13.8

On appelle lois marginales du couple (X, Y)

Il est facile de trouver les lois de X et Y à partir de la loi conjointe :

Proposition 13.9

La loi de X est donnée par

∀i ∈ I, P(X = xi) =

De même, la loi de Y est donnée par

∀j ∈ J, P(Y = yj) =

Démonstration. Il suffit d’appliquer la

Nota : Dans le cas de lois finies, en représentant la loi du couple comme un tableau, il suffit de
sommer les éléments des lignes (resp. des colonnes) pour trouver la loi de X (resp. Y).



Chapitre 13. Couples de variables aléatoires 173

(X, Y)
Valeurs de Y Somme de

y1 y2 · · · yp la ligne
V

al
eu

rs
de

X

x1 p1,1 p1,2 · · · p1,p P(X = x1)

x2 p2,1 p2,2 · · · p2,p P(X = x2)

...
...

...
. . .

...
...

xn pn,1 pn,2 · · · pn,p P(X = xn)

Somme de la colonne P(Y = y1) P(Y = y2) · · · P(Y = yp) 1

Exercice : Déterminer les lois marginales de l’exercice précédent.

Il est donc facile de trouver les lois marginales à partir de la loi conjointe. En revanche, il est souvent
difficile de faire l’opération inverse : il n’y a pas, dans le cas général, de façon simple de trouver la
loi conjointe connaissant les lois marginales.

En revanche, si les variables sont indépendantes :

Proposition 13.10

Si X et Y sont indépendantes, alors pour tous i, j

pi,j =

Définition 13.11

Soit i ∈ I tel que P(X = xi) , 0. On appelle loi conditionnelle de Y sachant X = xi l’application

{yj | j ∈ J} −→ [0, 1]
yj 7−→ PX=xi(Y = yj) =

On a alors, en appliquant directement la formule des probabilités totales

Proposition 13.12

On suppose que tous les P(X = xi) et P(Y = yj) sont non nuls. Alors pour tous i, j

• pi,j =
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• P(X = xi) =

• P(Y = yj) =

Comme dit précédemment, les lois marginales ne suffisent pas à déterminer la loi conjointe, mais
une loi marginale et les lois conditionnelles de l’autre variables suffisent.

13.4 Fonctions de deux variables aléatoires

Comme on l’a vu, on peut prendre la fonction d’un couple de variable aléatoire.

Proposition 13.13

Si X et Y sont discrètes, alors pour toute fonction g, g(X, Y) est discrète.

On considérera donc des variables comme X + Y, max(X, Y), min(X, Y), etc.

Pour trouver la loi de g(X, Y), i.e. pour calculer les P(g(X, Y) = z), il suffit de sommer les P(X =

x ∩ Y = y) pour tous les x, y tels que g(x, y) = z :

P(g(X, Y) = z) = ∑
g(x,y)=z

P(X = x ∩ Y = y).

On peut alors appliquer le théorème de transfert

Théorème 13.14 – de transfert

La variable aléatoire Z = g(X, Y) admet une espérance si et seulement si la série double
∑ g(x, y)P(X = x ∩ Y = y) converge absolument, et dans ce cas

E(Z) =

Exercice : En se servant du théorème de transfert, montrer la linéarité de l’espérance

E(λX + Y) = λE(X) + E(Y).

13.4.1 Somme de deux variables indépendantes

Proposition 13.15
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Si X et Y sont indépendantes, alors

P(X + Y = z) =

On dit alors que la loi de X + Y est le produit de convolution des lois de X et de Y.

Démonstration. On a vu comment trouver la loi de g(X, Y) :

P(X + Y = z) =

=

On a alors certains résultats de stabilité.

Proposition 13.16

L’ensemble des lois de Poisson est stable par somme.

Plus précisément, soient X ,→ P(λ) et Y ,→ P(µ), indépendantes. Alors

X + Y ,→

Démonstration. On a, d’après la formule précédente

P(X + Y = n) =

=

On sait que P(X = i) = et P(Y = n − i) = . Donc

P(X + Y = n) =

En appliquant la formule du binôme, on obtient donc bien

P(X + Y = n) =

=
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Proposition 13.17

L’ensemble des lois binomiales de probabilité p est stable par somme.

Plus précisément, soient X ,→ B(m, p) et Y ,→ B(n, p) indépendantes. Alors

X + Y ,→

Démonstration. En revenant à la définition de loi binomiale :

• X correspond au nombre de succès dans la répétition de n épreuves de Bernoulli indé-
pendantes de paramètre p

• Y correspond au nombre de succès dans la répétition de m épreuves de Bernoulli indé-
pendantes de paramètre p

X + Y est donc le nombre de succès dans la répétition de n + m épreuves de Bernoulli indé-
pendantes de paramètre p.

13.4.2 Maximum de deux variables

Proposition 13.18

On a, pour tout z ∈ R,

(max(X, Y) ⩽ z) =

Si X et Y sont indépendantes, on a alors

Fmax(X,Y)(z) =

Démonstration. Le premier point est évident par définition du max.

Si X et Y sont indépendantes, on a alors

Fmax(X,Y)(z) =

=

=

On note que dans le cas du max, c’est la fonction de répartition qui nous donne la loi de probabilité.

Exercice : En procédant de la même façon, trouver la loi de min(X, Y).
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13.5 Covariance et corrélation linéaire

Dans cette section, on reprend les variables aléatoires discrètes de la section précédente.

Commençons par essayer de calculer l’espérance d’un produit de variables aléatoires.

Proposition 13.19

Si X, Y sont indépendantes, alors si X et Y admettent une espérance, alors XY aussi et

E(XY) =

Démonstration. D’après le théorème de transfert, il suffit d’étudier la convergence et de cal-
culer la somme double

∑
i∈I,j∈J

On a donc

=

=

Comme X et Y admettent une espérance, la somme converge bien, et donc XY admet une
espérance. De plus

∑
i∈I,j∈J

= ∑
i∈I

∑
j∈J

= ∑
i∈I

= E(X)E(Y)

Exercice : Montrer que, dans le cas où X et Y ne sont pas indépendantes mais admettent un
moment d’ordre 2, alors XY admet toujours une espérance.

13.5.1 Covariance

Définition 13.20

Si X et Y admettent un moment d’ordre 2, on appelle covariance de X et Y le nombre réel

Cov(X, Y) =
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Nota : D’après l’exercice précédent, puisque X et Y ont un moment d’ordre 2, XY admet bien
une espérance.

Nota : On note que la covariance d’une variable avec elle-même est égale à la variance.

Proposition 13.21 – Formule de Hyugens

Si X et Y admettent un moment d’ordre 2, alors

Cov(X, Y) =

Démonstration.

La covariance est une fonction bilinéaire, symétrique et positive :

Proposition 13.22

On suppose que X, Y, Z admettent un moment d’ordre 2. Alors

• Symétrie :

• Bilinéarité :

– ∀λ ∈ R,

– ∀λ ∈ R,

• Positivité :

Proposition 13.23

Si X et Y admettent un moment d’ordre 2 et sont indépendantes, alors
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Nota : Attention ! La réciproque est fausse. La nullité de la covariance n’est en aucun cas une
condition nécessaire et suffisante d’indépendance. On pourra retenir le contre-exemple suivant :

Soit Z une variable qui vaut −1 et 1 avec probabilités respectives 1
2

*. Soit X une variable aléatoire
discrète quelconque admettant une espérance et une variance, indépendante de Z.

Alors X et Y = ZX ne sont pas indépendantes, mais

Cov(X, Y) = E(XY)− E(X)E(Y) = E(X2Z)− E(X)E(ZX) = 0.

On peut s’en servir pour calculer, dans le cas d’indépendance, la variance d’une somme de variables
aléatoires.

Théorème 13.24

Si X et Y admettent un moment d’ordre 2, alors X + Y admet un moment d’ordre 2, et

V(X + Y) =

En particulier, dans le cas où X et Y sont indépendantes, on a donc

V(X + Y) =

Démonstration. Il suffit de calculer :

V(X + Y) =

=

=

=

Nota : Dans le cas où on connaît la loi de X +Y, on peut s’en servir pour calculer la covariance :

Cov(X, Y) =

Proposition 13.25 – Inégalité de Cauchy-Schwarz

Soient X et Y deux variables aléatoires admettant une variance. On a

*. On dit que Z suit la loi de Rademacher
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Démonstration. C’est une inégalité de Cauchy-Schwarz, aussi on étudie la fonction φ : t 7→
V(tX − Y).

On a V(tX − Y) = : φ est un

On en déduit donc que 4 Cov(X, Y)2 ⩽ 4V(X)V(Y), et donc le résultat.
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13.6 Exercices

Exercice 1

Soient X et Y deux variables aléatoires à valeurs dans N. On suppose que X suit une loi de Poisson
de paramètre λ > 0 et que la loi de Y sachant X = n est binomiale de paramètres n et p ∈]0, 1[.

1. Déterminer la loi conjointe de (X, Y).

2. Reconnaître la loi de Y.

Exercice 2

Soient X et Y deux variables aléatoires réelles à valeurs dans N telles que pour tous i, j ∈ N,

P((X, Y) = (i, j)) =
α

2i+1 j!
.

1. Déterminer la valeur de α.

2. Montrer que X et Y sont indépendantes.

Exercice 3

Soit n ∈ N∗, et soient X et Y deux variables aléatoires finies d’image [1, n]. On suppose qu’il existe
a ∈ R tel que pour tous i, j ∈ [1, n],

P(X = i ∩ Y = j) = aij.

1. Calculer la valeur de a.

2. Déterminer les lois marginales de X et Y, ainsi que leurs espérances.

3. Calculer la covariance de X et Y. Les variables X et Y sont-elles indépendantes?

4. Calculer P(X = Y).

5. Déterminer la loi de la variable M = max(X, Y).

Exercice 4

Soient X une variable aléatoire définie sur un espace probabilisé fini (ΩT , P) et f une application
définie sur X(Ω). À quelle condition les variables aléatoires X et f (X) sont-elles indépendantes?

Exercice 5

Soient X, Y et Z trois variables aléatoires mutuellement indépendantes et définies sur le même
espace probabilisé (Ω,A, P). On suppose que X, Y et Z suivent la loi uniforme sur [1, n].
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1. a) Montrer que :

∀k ∈ [2, n + 1], P(X + Y = k) =
k − 1

n2 .

b) Montrer que :

∀k ∈ [n + 2, 2n], P(X + Y = k) =
2n − k + 1

n2 .

2. En déduire que

P(X + Y = Z) =
n − 1
2n2 .

3. a) Montrer que la variable T = n + 1 − Z suit la loi uniforme sur [1, n].

b) En déduire la probabilité P(X + Y + Z = n + 1).

Exercice 6

Soit n ∈ N, n ⩾ 2. On tire sans remise deux jetons dans une urne contenant n jetons numérotés de
1 à n. On appelle X le numéro du premier, et Y le numéro du second.

1. Déterminer les lois de X et Y.

2. Les variables X et Y sont-elles indépendantes?

3. Calculer la covariance de X et Y.

4. On note Z = |X − Y|. Calculer la loi de Z, puis son espérance.

Exercice 7

Soient X et Y deux variables de Bernoulli de paramètres respectifs p et q.

1. Montrer que |Cov(X, Y)| ⩽ 1
4 .

2. Montrer qu’elles sont indépendantes si et seulement si leur covariance est nulle.

Exercice 8

Dans cet exercice, n est un entier naturel non nul.

Soit X1, . . . , Xn n variables à densité, indépendantes et de même fonction de répartition F, définies
sur un espace probabilisé (Ω,A, P).

Pour tout ω ∈ Ω, on ordonne les valeurs X1(ω), . . . , Xn(ω) et, pour tout k ∈ [1, n], on note Yk(ω) la
k-ème plus petite valeur. On a donc Y1(ω) ⩽ Y2(ω) ⩽ · · · ⩽ Yn(ω).

En particulier, on a Y1 = min(X1, . . . , Xn), Yn = max(X1, . . . , Xn).

1. Dans cette question uniquement, on suppose que les variables X1, . . . , Xn suivent la même loi
exponentielle de paramètre λ > 0.
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a) Calculer P(Y1 > x) pour tout réel x positif et en déduire la fonction de répartition de Y1.
Reconnaître une loi usuelle dont on donnera l’espérance et la variance.

b) Montrer que si U est une variable qui suit la loi uniforme sur ]0, 1] alors −1
λ ln(U) suit la

loi exponentielle de paramètre λ > 0.

c) Écrire un programme qui, pour un n ∈ N et un i ∈ [1, n] donnés, permet de simuler la va-
riable aléatoire Yi lorsque les variables X1, . . . , Xn suivent indépendamment la même loi
exponentielle de paramètre λ > 0. On pourra pour cela utiliser l’instruction B=sorted(A)
qui fournit un tableau B contenant les valeurs du tableau A rangées dans l’ordre croissant.

On retourne maintenant au cas général.

2. Exprimer la fonction de répartition de Yn à l’aide de F.

3. Les variables Y1 et Yn sont-elles indépendantes?

4. On souhaite maintenant obtenir la fonction de répartition de Yi, pour n’importe quel i dans
[1, n]. On fixe donc i dans [1, n] et x dans R et on cherche à calculer P(Yi ⩽ x). C’est la proba-
bilité qu’au moins i variables parmi X1, . . . , Xn soient inférieures ou égales à x.

a) Pour tout k ∈ [1, n], on note Zk la variable telle que Zk(ω) = 1 si Xk(ω) ⩽ x et Zk(ω) = 0
sinon. Reconnaître la loi de Zk (on exprimera le(s) paramètre(s) à l’aide de F(x)).

b) On note S =
n
∑

k=1
Zk. Que représente S ? Reconnaître sa loi.

c) Montrer que P(Yi ⩽ x) = P(S ⩾ i) et en déduire l’expression de P(Yi ⩽ x) sous la forme
d’une somme que l’on ne cherchera pas à simplifier.




