Théorémes de convergence en pr ilité
Statistiques infére lles

E&imation

Définition 1 4.1

Soit X une variable aléatoire admettant une espérance y et une variance 2.

Pour tout entier n € IN*, on appelle n-échantillon de X

On appelle alors estimateur d"un parametre 6 de X |

Le but d"un estimateur est de pouvoir, a partir d"une suite d’observations empiriques d"un phéno-
mene aléatoire, calculer une approximation du parametre recherché.

EXEMPLES (A CONNATTRE) :  Soit X une variable aléatoire admettant une espérance y et une variance

2.

Les deux estimateurs suivants sont a connaitre :
o la moyenne empirique, notée M, ou X,,, définie par
Mn —

est un estimateur de

o la variance empirique, notée S2, définie par

5=

est un estimateur de

t. On parlera souvent de suite de variables i.i.d., pour « indépendantes et identiquement distribuées ».
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Convergence en loi

Les suites de variables aléatoires peuvent converger sous différents sens. On étudie ici le cas de la
convergence en [oi.

Soit (X, )nen une suite de variables aléatoires, et soit X une variable aléatoire.

Pour tout n, on note F, la fonction de répartition de X,,, et on note F la fonction de répartition
de X.

On dit alors que la suite (X, ),en converge en loi vers X si pour tout réel ¢ ott F est continue, la
suite (F,(f))nen converge vers F(t).

On note alors X, £> X. |

ExempLE: Soient U, — U([0,1]) mutuellement indépendantes. On pose

Xy = n(1—max(Uy, ..., Uy)).

On commence par chercher la fonction de répartition de X, : soit x € R.

. _xya
Or on sait que (1 — %) — , et donc, pour tous n et x
FXn (x) —_—
n—oo

On reconnait alors la fonction de répartition d"une loi

On peut donc dire, en posant X — , que

X, 5 X

Proposition 14.3
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Soient (X},) et X des variables aléatoires a valeurs dans Z. Alors

Xn£>X & |

Proposition 14.4 — Approximation de loi binomiale par la loi de Poisson

Soit (X;,) une suite de variables aléatoires de lois respectives B(n, p,), avec np, — A > 0.

Alors X, £> XouX —

Démonstration. Les lois binomiales et de Poisson sont a valeurs entiéres, et on applique donc
le résultat précédent.

On a donc

On note que la condition np, — A est équivalente a dire que p, ~ , et donc

(+25) -
1—py

(1 o pn)n — enln(lfpn)’

De plus, on a

avecnIn(l—p,) ~ .Donc (1 —p,)" — .On peut aussi montrer
facilement que () ~

On a donc
P(X, =k) ~

et on reconnait la loi d"une variable de Poisson de parameétre A. O

Dans la pratique, pour 1 assez grand et certaines conditions, on utilise le résultat d’approximation
suivant :

Corollaire 14.5
Sip < 01 n > 30 et np < 15, on peut approximer la loi binomiale B(n,p) par |
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Wl Théorémes limites

Commencons par rappeler que si X est une variable aléatoire admettant une espérance y et une
. . P . X— . P . 2
variance ¢? # 0, alors on note X* la variable aléatoire TH Cette variable aléatoire est alors centrée

réduite.
On notera toujours M, = 1 i X; la moyenne empirique, ot1 les variables X; sont indépendantes et
de méme loi que X. -
On a alors
E(M,) = et V(M,)=

La variable centrée réduite associée a M, est donc M, définie par :

M, =

On rappelle alors 'inégalité de Bienaymé-Tchebychev :

Théoréme 14.6 — Inégalité de Bienaymé-Tchebytchev

Soit X une variable aléatoire admettant une variance. Alors

Ve > 0, |

ExempLE : On souhaite estimer la valeur de 7 a 0,1 prés, avec un risque d’erreur inférieur a
1%. Pour cela, on tire au hasard deux valeurs x et y uniformément dans [0,1]. On note que la
probabilité que le point de coordonnées (x, y) soit dans le quart de cercle de centre 0 et de rayon
lest Z.

4

On itére I'expérience : on note X, la variable aléatoire qui vaut 1 si le n-iéme point tiré est dans le
cercle, 0 sinon. On note de plus M, la moyenne empirique des X;,.

On cherche donc 7 tel que

En notant que pour tout x € [0,1], x(1 — x) < },l'inégalité de Bienaymé-Tchebytchev nous donne

11 suffit donc de prendre

On se fixe alors dans la suite une variable aléatoire X admettant une espérance y et une variance
2
o= 0.
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On en déduit alors directement la loi faible des grands nombres :

Théoréme 14.7 — Loi faible des grands nombres

Soit (X, ) une suite de variables aléatoires indépendantes de méme loi que X. Alors

Ve > 0, |

On peut alors raffiner le théoreme précédent pour obtenir le célebre théoreme central limite.

Théoréme 14.8 — central limite

Soit (X, ) une suite de variables aléatoires indépendantes toutes de méme loi que X.
Alors la suite (M) converge en loi vers une loi normale centrée réduite.

On a donc pour tous réels a < b,

|

Nota: Le résultat reste vrai en faisant tendre a ou b vers too. Par exemple,

Ce théoreme nous dit que, en un certain sens, on peut approximer la quantité M,, par une loi nor-
< 2
male de parametres y et .

Un inconvénient de ce théoreme est qu'il est nécessaire de connaitre 1'écart-type du phénomene
observé. Dans le cas contraire, on peut le remplacer par 1’écart-type empirique.

Avec les mémes hypotheses, posons
1 n
My =Y X
=

1 &
S%z = ; Z(Xk - Mn)2
k=1

On a alors
Théoréme 14.9 — central limite

M

=

Dans le contexte précédent, la suite ( — ) converge en loi vers une loi normale centrée ré-

9
K

duite.
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Dans le cas particulier de la loi binomiale, on obtient le théoreme suivant :
Théoréme 14.10 — Moivre-Laplace

Soit p €]0,1], et soit (X,) une suite de variables indépendantes telles que X,, — B(n, p).

On a donc

Alors pour tous réels a < b,

P a<ﬂ<b -
np(l—p) e

Démonstration. On peut écrire X,, comme la somme de 7 variables de Bernoulli identiques et

n
indépendantes, de parametre p: X,, = ) By.
k=1

. _
B, = 1 B.F = Bn_p = Xn_np

Ennotant B, = 151 By, on a donc B, \/”(1{”) Julip)”

Le théoreme central limite appliqué a la suite (B,) permet d’affirmer que la suite (B, ")

converge en loi vers une loi normale centrée réduite. O

En pratique, on approche la loi binomiale B(n, p) par une loi normale A (np, /npg*) si n > 30,
np >5etn(l—p) >5.

Wl Test de conformité de la moyenne

En statistique, un test d’hypothese est une méthode qui nous permettra de choisir s’il est raisonnable
d’accepter une hypothese Hy.

L'hypothese Hy, appelée hypothese nulle est alors faite; tous les résultats qui suivent supposent donc
que cette hypothese est vraie. Lhypothese contraire a Hy est appelée hypothese alternative, notée Hj.

Le test sera alors une méthode qui nous permettra d’accepter ou de rejeter Hp, en fonction d’obser-
vations empiriques. Il est cependant statistiquement impossible d’étre stir d’avoir eu raison dans
notre conclusion. On distingue alors deux types d’erreurs :

e le risque de premiére espece, qui est le risque de rejeter 'hypothese Hp sachant qu’elle est
vraie; ce risque est choisi a 'avance, souvent 5% ou 1%

e le risque de seconde espéce, qui est le risque d’accepter '’hypothese sachant qu’elle est fausse;
il est plus difficile a calculer, et son étude dépasse le cadre de ce cours.
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On peut alors utiliser le test suivant pour la valeur de la moyenne :

Proposition 14.11

Soit X une variable aléatoire admettant une espérance y et une variance o2 # 0. Soit yy € R.
On suppose Hy : jt = o, et on définit I’hypothese alternative Hj : u # po.
Alors

N[

|

ol s estl'unique réel tel que ® (ul_%) =1-

En pratique, pour faire un test d’hypothése de conformité de la moyenne :

ExempLE : Un médicament doit contenir yo = 2, 5g de substance active.

En prenant 100 comprimés au hasard, on trouve une moyenne de M,, = 2, 6g de substance active,
avec une variance S2 = 0.16.

On utilise un test de conformité a la moyenne, avec un risque de 5%.

On choisit alors Up_s = 1.96, et on a alors

On peut donc notre hypothése.
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Exercice 1

Soit (X;,) une suite de variables aléatoires identiques et indépendantes, admettant une espérance y

et une variance 2.

1. Montrer que E(S2) # o2.
2. On appelle alors estimateur corrigé de la variance la suite

1 n
S? = — Y (X — M)
i=1

Montrer que E(S/?) = o2.

Exercice 2

—x—e ¥

Soit f la fonction définie sur R par f(x) =e
1. Vérifier que f est une fonction de densité.
On dit qu'une variable admettant f pour densité suit la loi de Gumbel.

2. Soit (X,) une suite de variables aléatoires indépendantes, suivant toutes la loi exponentielle
de parametre 1.

On pose pour tout 1 : M,, = max(Xj, ..., Xy).

Calculer la fonction de répartition F, de M,,.

3. Montrer que la suite (M, — In(n)) converge en loi vers une loi de Gumbel.

Exercice 3

Soit A > 0. Pour tout entier n > A, on définit une suite (X, ;);en+ de variables aléatoires indépen-

A

dantes suivant toutes une loi de Bernoulli de parametre p,, = 7.

On définit alors pour tout 7 :
1 .
N, = Emin{z eN* | X,; =1}

1. Déterminer la loi de la variable nN,, et en déduire la fonction de répartition de N,.

2. Montrer que la suite (N, ) converge en loi vers une variable exponentielle de parametre A.
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Exercice 4

Une compagnie aérienne, disposant de 300 places dans un avion, souhaite optimiser au mieux son
remplissage. On estime qu'une personne ayant réservé oublie de se présenter a I'aéroport avec une
probabilité de 10%. Les choix des passagers de venir ou non sont supposés indépendants.

Pour un entier n représentant le nombre de réservations faites, on note S, le nombre de personnes
qui se présentent a 1’aéroport.

1. Calculer E(S,) et V(S,).

2. Déterminer le nombre maximal de réservations que peut proposer la compagnie pour que le
risque de ne pas pouvoir embarquer tout le monde soit inférieur a 5%.

Exercice 5

Montrer que

nopko1
w1
lim e kZ:O Ko

On pourra utiliser des variables aléatoires X; indépendantes, suivant toutes une loi de Poisson »>(1).

Exercice 6

On pourra utiliser pour les programmes Python la fonction 1inalg.matrix_rank () du module numpy,
qui permet de déterminer le rang d une matrice, comme le montre I'exemple suivant :

import numpy as np

A =np. array ( [ [T ,2 ,1] , [2 ,3 ,2], [3 ,5 ,3]] )
( np. linalg . matrix_rank (A) )
1 21
La derniere ligne affiche le rang de la matrice | 2 3 2 |, c’est-a-dire 2.
353

On pourra aussi utiliser la fonction randint () du module random. Pour a et b deux entiers randint(a,b)
retourne un entier équiprobablement entre a et b (a et b étant inclus).

On consideére la matrice :

3 1 1
A=11 0 1
-3 0 -1

1. a) Ecrire une fonction Python prenant en arguments deux vecteurs de taille 3 et renvoyant
un booléen (True ou False) indiquant s’ils sont colinéaires. (On pourra représenter les vec-
teurs par des listes).

b) Ecrire une fonction Python vecteurs_propres(u) prenant en argument un vecteur de

taille 3 et renvoyant un booléen (True ou False) indiquant s’il est un vecteur propre de
A.
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2. a) Vérifier que —1, 1,2 sont valeurs propres de A et préciser pour chacune un vecteur propre
associé.

b) La matrice A est-elle diagonalisable ?

3. Soient Xy, - -, X, n variables aléatoires indépendantes suivant la loi de Bernoulli de para-

n
metre p €]0;1[. Onnote: M, = 2} Xy et M} = Nin(;’;)
k=1 T

n

a) Donner, pour « € R* , I'approximation de la probabilité P([—a« < M;; < a]|) donnée par

le théoréme central limite.

b) En déduire que IP (p € [Mn — o My + ﬁD > 0.95.
On pourra admettre que, Vx € [0;1], x(1 — x) < 1 et si O désigne la fonction de répartition
d’une variable suivant une loi normale centrée réduite, alors ®(1;96) ~ 0,975.

4. Onnote Ny le nombre de vecteurs propres de A dont les ccefficients sont des entiers de [ -5, 5].

a) Expliquer comment le programme suivant permet d’estimer la valeur de Ny :

def simul ():

u = [ randint ( -5 ,5) for k in range (3) |
return vecteurs_propres (u)

n = 10000 # Valeur de n a definir.

nb = 0

for k in range (n):
if simul ():
nb += 1
( round (nb/n *11%%3)) # round (x) = 1'entier le plus proche de x.

b) Comment choisir n pour que 1’on soit stir a 95% de la valeur affichée?

¢) Commenter le résultat obtenu.



