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Théorèmes de convergence en probabilité

Statistiques inférentielles

14.1 Estimation

Définition 14.1

Soit X une variable aléatoire admettant une espérance µ et une variance σ2.

Pour tout entier n ∈ N∗, on appelle n-échantillon de X

On appelle alors estimateur d’un paramètre θ de X

Le but d’un estimateur est de pouvoir, à partir d’une suite d’observations empiriques d’un phéno-
mène aléatoire, calculer une approximation du paramètre recherché.

Exemples (à connaître) : Soit X une variable aléatoire admettant une espérance µ et une variance
σ2.

Les deux estimateurs suivants sont à connaître :

• la moyenne empirique, notée Mn ou Xn, définie par

Mn =

est un estimateur de

• la variance empirique, notée S2
n, définie par

S2
n =

est un estimateur de

†. On parlera souvent de suite de variables i.i.d., pour « indépendantes et identiquement distribuées ».
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14.2 Convergence en loi

Les suites de variables aléatoires peuvent converger sous différents sens. On étudie ici le cas de la
convergence en loi.

Définition 14.2

Soit (Xn)n∈N une suite de variables aléatoires, et soit X une variable aléatoire.

Pour tout n, on note Fn la fonction de répartition de Xn, et on note F la fonction de répartition
de X.

On dit alors que la suite (Xn)n∈N converge en loi vers X si pour tout réel t où F est continue, la
suite (Fn(t))n∈N converge vers F(t).

On note alors Xn
L−→ X.

Exemple : Soient Un ,→ U ([0, 1]) mutuellement indépendantes. On pose

Xn = n(1 − max(U1, . . . , Un)).

On commence par chercher la fonction de répartition de Xn : soit x ∈ R.

P (Xn ⩽ x) =

=

=

=

Or on sait que (1 − x
n )

n −−−→
n→∞

, et donc, pour tous n et x

FXn(x) −−−→
n→∞

On reconnaît alors la fonction de répartition d’une loi

On peut donc dire, en posant X ,→ , que

Xn
L−→ X.

Proposition 14.3
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Soient (Xn) et X des variables aléatoires à valeurs dans Z. Alors

Xn
L−→ X ⇔

Proposition 14.4 – Approximation de loi binomiale par la loi de Poisson

Soit (Xn) une suite de variables aléatoires de lois respectives B(n, pn), avec npn → λ > 0.

Alors Xn
L−→ X où X ,→ .

Démonstration. Les lois binomiales et de Poisson sont à valeurs entières, et on applique donc
le résultat précédent.

On a donc

P(Xn = k) =

On note que la condition npn → λ est équivalente à dire que pn ∼ , et donc

�
pn

1 − pn

�k

∼

De plus, on a
(1 − pn)

n = en ln(1−pn),

avec n ln(1− pn) ∼ . Donc (1− pn)n → . On peut aussi montrer
facilement que (n

k) ∼ .

On a donc

P(Xn = k) ∼

et on reconnaît la loi d’une variable de Poisson de paramètre λ.

Dans la pratique, pour n assez grand et certaines conditions, on utilise le résultat d’approximation
suivant :

Corollaire 14.5

Si p ⩽ 0, 1, n ⩾ 30 et np ⩽ 15, on peut approximer la loi binomiale B(n, p) par



188
Chapitre 14. Théorèmes de convergence en probabilité

Statistiques inférentielles

14.3 Théorèmes limites

Commençons par rappeler que si X est une variable aléatoire admettant une espérance µ et une
variance σ2 , 0, alors on note X∗ la variable aléatoire X−µ

σ . Cette variable aléatoire est alors centrée
réduite.

On notera toujours Mn = 1
n

n
∑

i=1
Xi la moyenne empirique, où les variables Xi sont indépendantes et

de même loi que X.

On a alors

E(Mn) = et V(Mn) =

La variable centrée réduite associée à Mn est donc M∗
n définie par :

M∗
n =

On rappelle alors l’inégalité de Bienaymé-Tchebychev :

Théorème 14.6 – Inégalité de Bienaymé-Tchebytchev

Soit X une variable aléatoire admettant une variance. Alors

∀ε > 0,

Exemple : On souhaite estimer la valeur de π
4 à 0, 1 près, avec un risque d’erreur inférieur à

1%. Pour cela, on tire au hasard deux valeurs x et y uniformément dans [0, 1]. On note que la
probabilité que le point de coordonnées (x, y) soit dans le quart de cercle de centre 0 et de rayon
1 est π

4 .

On itère l’expérience : on note Xn la variable aléatoire qui vaut 1 si le n-ième point tiré est dans le
cercle, 0 sinon. On note de plus Mn la moyenne empirique des Xn.

On cherche donc n tel que

En notant que pour tout x ∈ [0, 1], x(1− x) ⩽ 1
4 , l’inégalité de Bienaymé-Tchebytchev nous donne

Il suffit donc de prendre

On se fixe alors dans la suite une variable aléatoire X admettant une espérance µ et une variance
σ2 , 0.
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On en déduit alors directement la loi faible des grands nombres :

Théorème 14.7 – Loi faible des grands nombres

Soit (Xn) une suite de variables aléatoires indépendantes de même loi que X. Alors

∀ε > 0,

On peut alors raffiner le théorème précédent pour obtenir le célèbre théorème central limite.

Théorème 14.8 – central limite

Soit (Xn) une suite de variables aléatoires indépendantes toutes de même loi que X.

Alors la suite (M∗
n) converge en loi vers une loi normale centrée réduite.

On a donc pour tous réels a < b,

Nota : Le résultat reste vrai en faisant tendre a ou b vers ±∞. Par exemple,

Ce théorème nous dit que, en un certain sens, on peut approximer la quantité Mn par une loi nor-
male de paramètres µ et σ2

n .

Un inconvénient de ce théorème est qu’il est nécessaire de connaître l’écart-type du phénomène
observé. Dans le cas contraire, on peut le remplacer par l’écart-type empirique.

Avec les mêmes hypothèses, posons

Mn =
1
n

n

∑
k=1

Xk

S2
n =

1
n

n

∑
k=1

(Xk − Mn)
2

On a alors

Théorème 14.9 – central limite

Dans le contexte précédent, la suite
�

Mn−µ
Sn√

n

�
converge en loi vers une loi normale centrée ré-

duite.
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On a donc

Dans le cas particulier de la loi binomiale, on obtient le théorème suivant :

Théorème 14.10 – Moivre-Laplace

Soit p ∈]0, 1[, et soit (Xn) une suite de variables indépendantes telles que Xn ,→ B(n, p).

Alors pour tous réels a < b,

P

 
a <

Xn − npp
np(1 − p)

< b

!
−−−→
n→∞

Démonstration. On peut écrire Xn comme la somme de n variables de Bernoulli identiques et

indépendantes, de paramètre p : Xn =
n
∑

k=1
Bk.

En notant Bn = 1
n

n
∑

k=1
Bk, on a donc Bn

∗
= Bn−pq

p(1−p)
n

= Xn−np√
np(1−p)

.

Le théorème central limite appliqué à la suite (Bn) permet d’affirmer que la suite (Bn
∗
)

converge en loi vers une loi normale centrée réduite.

En pratique, on approche la loi binomiale B(n, p) par une loi normale N (np,
√

npq2) si n ⩾ 30,
np ⩾ 5 et n(1 − p) ⩾ 5.

14.4 Test de conformité de la moyenne

En statistique, un test d’hypothèse est une méthode qui nous permettra de choisir s’il est raisonnable
d’accepter une hypothèse H0.

L’hypothèse H0, appelée hypothèse nulle est alors faite ; tous les résultats qui suivent supposent donc
que cette hypothèse est vraie. L’hypothèse contraire à H0 est appelée hypothèse alternative, notée H1.

Le test sera alors une méthode qui nous permettra d’accepter ou de rejeter H0, en fonction d’obser-
vations empiriques. Il est cependant statistiquement impossible d’être sûr d’avoir eu raison dans
notre conclusion. On distingue alors deux types d’erreurs :

• le risque de première espèce, qui est le risque de rejeter l’hypothèse H0 sachant qu’elle est
vraie ; ce risque est choisi à l’avance, souvent 5% ou 1%

• le risque de seconde espèce, qui est le risque d’accepter l’hypothèse sachant qu’elle est fausse ;
il est plus difficile à calculer, et son étude dépasse le cadre de ce cours.



Chapitre 14. Théorèmes de convergence en probabilité
Statistiques inférentielles 191

On peut alors utiliser le test suivant pour la valeur de la moyenne :

Proposition 14.11

Soit X une variable aléatoire admettant une espérance µ et une variance σ2 , 0. Soit µ0 ∈ R.

On suppose H0 : µ = µ0, et on définit l’hypothèse alternative H1 : µ , µ0.

Alors

où u1− α
2

est l’unique réel tel que Φ
�

u1− α
2

�
= 1 − α

2 .

En pratique, pour faire un test d’hypothèse de conformité de la moyenne :

•

•

Exemple : Un médicament doit contenir µ0 = 2, 5g de substance active.

En prenant 100 comprimés au hasard, on trouve une moyenne de Mn = 2, 6g de substance active,
avec une variance S2

n = 0.16.

On utilise un test de conformité à la moyenne, avec un risque de 5%.

On choisit alors u1− α
2
= 1.96, et on a alors

On peut donc notre hypothèse.
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14.5 Exercices

Exercice 1

Soit (Xn) une suite de variables aléatoires identiques et indépendantes, admettant une espérance µ

et une variance σ2.

1. Montrer que E(S2
n) , σ2.

2. On appelle alors estimateur corrigé de la variance la suite

S′2
n =

1
n − 1

n

∑
i=1

(Xi − Mn)
2.

Montrer que E(S′2
n ) = σ2.

Exercice 2

Soit f la fonction définie sur R par f (x) = e−x−e−x
.

1. Vérifier que f est une fonction de densité.

On dit qu’une variable admettant f pour densité suit la loi de Gumbel.

2. Soit (Xn) une suite de variables aléatoires indépendantes, suivant toutes la loi exponentielle
de paramètre 1.

On pose pour tout n : Mn = max(X1, . . . , Xn).

Calculer la fonction de répartition Fn de Mn.

3. Montrer que la suite (Mn − ln(n)) converge en loi vers une loi de Gumbel.

Exercice 3

Soit λ > 0. Pour tout entier n ⩾ λ, on définit une suite (Xn,i)i∈N∗ de variables aléatoires indépen-
dantes suivant toutes une loi de Bernoulli de paramètre pn = λ

n .

On définit alors pour tout n :

Nn =
1
n

min{i ∈ N∗ | Xn,i = 1}.

1. Déterminer la loi de la variable nNn, et en déduire la fonction de répartition de Nn.

2. Montrer que la suite (Nn) converge en loi vers une variable exponentielle de paramètre λ.
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Exercice 4

Une compagnie aérienne, disposant de 300 places dans un avion, souhaite optimiser au mieux son
remplissage. On estime qu’une personne ayant réservé oublie de se présenter à l’aéroport avec une
probabilité de 10%. Les choix des passagers de venir ou non sont supposés indépendants.

Pour un entier n représentant le nombre de réservations faites, on note Sn le nombre de personnes
qui se présentent à l’aéroport.

1. Calculer E(Sn) et V(Sn).

2. Déterminer le nombre maximal de réservations que peut proposer la compagnie pour que le
risque de ne pas pouvoir embarquer tout le monde soit inférieur à 5%.

Exercice 5

Montrer que

lim
n→∞

e−n
n

∑
k=0

nk

k!
=

1
2

.

On pourra utiliser des variables aléatoires Xi indépendantes, suivant toutes une loi de Poissond(1).

Exercice 6

On pourra utiliser pour les programmes Python la fonction linalg.matrix_rank() du module numpy,
qui permet de déterminer le rang d’une matrice, comme le montre l’exemple suivant :

1 import numpy as np
2 A = np. array ( [ [1 ,2 ,1] , [2 ,3 ,2], [3 ,5 ,3]] )
3 print ( np. linalg . matrix_rank (A) )
4

La dernière ligne affiche le rang de la matrice




1 2 1
2 3 2
3 5 3


, c’est-à-dire 2.

On pourra aussi utiliser la fonction randint() du module random. Pour a et b deux entiers randint(a,b)

retourne un entier équiprobablement entre a et b (a et b étant inclus).

On considère la matrice :

A =




3 1 1
1 0 1
−3 0 −1


 .

1. a) Écrire une fonction Python prenant en arguments deux vecteurs de taille 3 et renvoyant
un booléen (True ou False) indiquant s’ils sont colinéaires. (On pourra représenter les vec-
teurs par des listes).

b) Écrire une fonction Python vecteurs_propres(u) prenant en argument un vecteur de
taille 3 et renvoyant un booléen (True ou False) indiquant s’il est un vecteur propre de
A.
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2. a) Vérifier que −1, 1, 2 sont valeurs propres de A et préciser pour chacune un vecteur propre
associé.

b) La matrice A est-elle diagonalisable?

3. Soient X1, · · · , Xn, n variables aléatoires indépendantes suivant la loi de Bernoulli de para-

mètre p ∈]0; 1[. On note : Mn = 1
n

n
∑

k=1
Xk et M∗

n = Mn−pq
p(1−p)

n

.

a) Donner, pour α ∈ R∗
+, l’approximation de la probabilité P([−α < M∗

n < α]) donnée par
le théorème central limite.

b) En déduire que P
�

p ∈
h

Mn − 1√
n , Mn +

1√
n

i�
⩾ 0.95.

On pourra admettre que, ∀x ∈ [0; 1], x(1 − x) ≤ 1
4 et si Φ désigne la fonction de répartition

d’une variable suivant une loi normale centrée réduite, alors Φ(1; 96) ≈ 0, 975.

4. On note NV le nombre de vecteurs propres de A dont les cœfficients sont des entiers de [−5, 5].

a) Expliquer comment le programme suivant permet d’estimer la valeur de NV :

1 def simul ():
2 u = [ randint ( -5 ,5) for k in range (3) ]
3 return vecteurs_propres (u)
4 n = 10000 # Valeur de n a definir.
5 nb = 0
6 for k in range (n):
7 if simul ():
8 nb += 1
9 print ( round (nb/n *11**3)) # round (x) = l’entier le plus proche de x.

10

b) Comment choisir n pour que l’on soit sûr à 95% de la valeur affichée?

c) Commenter le résultat obtenu.


