
��
Géométrie et produits scalaires

15.1 Rappels de géométrie dans le plan et l’espace

On notera P le plan euclidien, et E l’espace euclidien.

Définition 15.1

On appelle droite la donnée de

•

•

La droite est alors l’ensemble des points M tels que

On note (AB) la droite de vecteur directeur
−→
AB passant par A. On a donc

(AB) =

Si le réel λ est limité à [0, 1], on parle alors de segment [AB].

Proposition 15.2 – Représentation paramétrique d’une droite du plan

Soit (d) une droite de vecteur directeur u = (a, b) passant par A(xA, yA). Alors un point M(x, y)
appartient à la droite si et seulement si

Proposition 15.3 – Représentation paramétrique d’une droite de l’espace

Soit (d) une droite de vecteur directeur u = (a, b, c) passant par A(xA, yA, zA). Alors un point
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M(x, y, z) appartient à la droite si et seulement si

Proposition 15.4 – Équation cartésienne d’une droite du plan

Soit (d) la droite de vecteur directeur u passant par A(xA, yA). Soit v = (a, b) un vecteur ortho-
gonal à u. Alors un point M(x, y) appartient à la droite si et seulement si

Définition 15.5

Soient Ω ∈ P et R > 0. On appelle cercle de centre Ω et de rayon R l’ensemble

C(Ω, R) =

Proposition 15.6 – Équation paramétrique du cercle

Soient Ω(xΩ, yΩ) et R > 0. Alors

C(Ω, R) =

Proposition 15.7 – Équation implicite du cercle

Soient Ω(xΩ, yΩ) et R > 0. Alors

C(Ω, R) =

Réciproquement, toute courbe d’équation implicite
avec est une équation de cercle.

Définition 15.8

Un plan de l’espace P est défini par deux vecteurs non colinéaires et un point A. Plus précisé-
ment, si u, v sont des vecteurs et A un point, alors

P =
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Proposition 15.9 – Représentation paramétrique d’un plan

Soit P le plan de vecteurs directeurs u = (a, b, c) et v = (a′, b′, c′) passant par A(xA, yA, zA).
Alors un point M(x, y, z) appartient au plan si et seulement si

Proposition 15.10 – Équation cartésienne d’un plan

Soit P le plan de vecteurs directeurs u et v passant par A(xA, yA, zA).

Soit w = (a, b, c) un vecteur orthogonal au plan.

Alors un point M(x, y, z) appartient au plan si et seulement si

15.2 Produits scalaires dans Rn

Dans toute cette section, on travaille dans le R-espace vectoriel E = Rn.

15.2.1 Produits scalaires

Définition 15.11

Soit φ : E × E → R une application. On dit que φ est une forme bilinéaire si :

• ∀v ∈ E, u 7→ φ(u, v) est linéaire, i.e.

• ∀u ∈ E, v 7→ φ(u, v) est linéaire, i.e.

Une fonction qui vérifie le premier point est dite linéaire à gauche, et une fonction qui vérifie le
second point est dite linéaire à droite.
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Exemple : L’application

φ : R2 × R2 −→ R
(x, y), (u, v) 7−→ xu + yv

est bilinéaire. En effet, soient (x, y), (u, v)(a, b) ∈ R2 et λ ∈ R.

• On a

φ((x, y) + λ(a, b), (u, v)) =

=

=

=

• On a

φ((x, y), (u, v) + λ(a, b)) =

=

=

=

Définition 15.12

Soit φ : E × E → R une forme bilinéaire. On dit que φ est symétrique si

Exemple : L’application définie précédemment est symétrique.

Nota : Pour montrer qu’une application est une forme bilinéaire symétrique, il n’y a besoin de
montrer que la linéarité à gauche ou à droite, et la symétrie prouvera la linéarité par rapport à
l’autre variable.

Les formes bilinéaires symétriques se comportent comme des produits :

Proposition 15.13

Soit φ une forme bilinéaire symétrique sur E. Alors :

• ∀u ∈ E, φ(u, 0) = φ(0, u) =

• ∀u, v ∈ E, φ(u + v, u + v) = .

Démonstration. Soit u ∈ E. Alors v 7→ φ(u, v) est linéaire, donc envoie 0 sur 0.
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Si u, v ∈ E, alors :

φ(u + v, u + v) =

=

=

Définition 15.14 – Produit scalaire

Soit φ : E × E → R. On dit que φ est un produit scalaire sur E si

• φ est

• φ est

• φ est définie positive, i.e.

Les notations usuelles pour les produits scalaires sont ⟨u, v⟩, (u | v), u · v.

Exemple : L’application des exemples précédents est un produit scalaire sur R2. En effet, on a
déjà vu qu’elle était bilinéaire symétrique, et si (x, y) ∈ R2,

φ((x, y), (x, y)) =

avec égalité si et seulement si

Nota : Un espace vectoriel muni d’un produit scalaire est dit préhilbertien. S’il est de plus de
dimension finie, on parle d’espace euclidien.

On peut en fait généraliser l’exemple précédent à tout E :

Proposition-Définition 15.15

Soit n ∈ N. L’application E × E → R définie par

⟨(x1, . . . , xn), (y1, . . . , yn)⟩ =

est un produit scalaire sur E, appelé produit scalaire canonique.

Nota : On remarque que dans les cas n = 2 et n = 3, on retrouve le produit scalaire usuel dans
le plan et dans l’espace.
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Nota : On note que si on voit u et v comme des vecteurs colonnes, on a en identifiant M1(R) et
R :

⟨u, v⟩ =

Démonstration. Montrons que l’application est linéaire à gauche : soient u, v, w ∈ E, et λ ∈ R.

⟨u + λv, w⟩ =

=

=

Montrons maintenant qu’elle est symétrique : soient u, v ∈ E.

⟨u, v⟩ =

=

=

Montrons qu’elle est définie positive : soit u ∈ E.

⟨u, u⟩ =

avec égalité si et seulement si

Théorème 15.16 – Inégalité de Cauchy-Schwarz

Soit ⟨·, ·⟩ un produit scalaire sur E. Alors

∀u, v ∈ E,

De manière équivalente,

∀u, v ∈ E,

De plus, on a égalité si et seulement si

Nota : On remarque que ce résultat ressemble à celui du même nom vu pour la covariance. On
va en effet faire une démonstration très similaire.
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Démonstration. Si u ou v est nul, le résultat est trivial. Supposons donc u , 0 et v , 0.

On définit la fonction f sur R par

f (t) =

Par positivité du produit scalaire, on a bien ∀t ∈ R, f (t) ⩾ 0, et par bilinéarité, on a

∀t ∈ R, f (t) =

f est donc qui est toujours positif ;
:

On retrouve l’inégalité cherchée.

Supposons maintenant qu’on a l’égalité. Le trinôme f a donc une unique racine ; on la note
a. Mais alors f (a) = , et donc au + v = 0. Donc u et v
sont colinéaires.

Inversement, si u et v sont colinéaires, on peut écrire par exemple u = λv. Dans ce cas

φ(u, v)2 =

15.2.2 Norme

Dorénavant, on suppose qu’on a un produit scalaire ⟨·, ·⟩ sur E.

Définition 15.17

La norme associée au produit scalaire ⟨·, ·⟩ est l’application

∥ · ∥ : E −→ R+

u 7−→ .

Corollaire 15.18 – Inégalité de Cauchy-Schwarz

L’inégalité de Cauchy-Schwarz se réécrit donc

∀u, v ∈ E,

Exemple : La norme associée au produit scalaire canonique sur R2 est bien la norme euclidienne
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usuelle dans le plan :

∥(x, y)∥ =

Proposition 15.19

Soit u ∈ E. Alors

•

•

Démonstration. Ces deux propriétés viennent directement de celles du produit scalaire :

∥λu∥ =

Si u = 0, il est clair que ∥u∥ = 0. Si ∥u∥ = 0, alors ⟨u, u⟩ = 0, et donc u = 0.

Proposition 15.20 – Inégalité triangulaire (de Minkowski)

Soient u, v ∈ E. Alors
∥u + v∥

Démonstration. Tous les termes sont positifs, et on compare donc plutôt les carrés.

∥u + v∥2 =

=

=

Définition 15.21

On dit qu’un vecteur u ∈ E est unitaire s’il est de norme 1.

Si u ∈ E est non nul, on appelle normalisé de u le vecteur unitaire

15.2.3 Vecteurs orthogonaux

On rappelle qu’on travaille dans l’espace vectoriel E = Rn, muni d’un produit scalaire ⟨·, ·⟩.
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Définition 15.22

Soient u et v deux vecteurs de E. On dit que u et v sont orthogonaux si

On note alors

Nota : On note que la notion d’orthogonalité dépend donc du produit scalaire choisi.

Nota : On note que

Exercice : Montrer que la réciproque est vraie : si un vecteur est orthogonal à tous les autres
vecteurs, alors c’est le vecteur nul.

On peut alors écrire le célèbre théorème :

Théorème 15.23 – de Pythagore

Soient u et v dans E.

Alors u et v sont orthogonaux si et seulement si

Dans le cas de plus de deux vecteurs, un seul sens reste vrai :

Théorème 15.24 – de Pythagore

Soient u1, . . . , up des vecteurs de E deux à deux orthogonaux. On a alors

Définition 15.25

Soient F et G deux sous-espaces vectoriels de E. On dit que F et G sont orthogonaux si tout
vecteur de F est orthogonal à tout vecteur de G :

Proposition-Définition 15.26

Soit F un sous-espace vectoriel de E. On appelle orthogonal de F, noté F⊥, l’ensemble des vecteurs
orthogonaux à tous les vecteurs de F.
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Alors F⊥ est un sous-espace vectoriel de E, orthogonal à F.

15.3 Bases orthonormées, matrices symétriques

Proposition 15.27

Soient u1, . . . , uk des vecteurs non nuls de E. Si les vecteurs ui sont deux à deux orthogonaux,
alors

Démonstration. Supposons donc que les vecteurs ui sont deux à deux orthogonaux. Soient
a1, . . . , ak ∈ R tels que

k

∑
i=1

aiui = 0.

Soit j ∈ [1, k]. Alors par bilinéarité du produit scalaire, et les vecteurs étant deux à deux ortho-
gonaux, on a donc

Le vecteur uj étant non nul,

Ceci étant vrai pour tout j, on a bien

Définition 15.28

Soit B = (e1, . . . , en) une famille de vecteurs de E. On dit que B est une base orthogonale de E si

On dit que B est une base orthonormée si

Nota : D’après la propriété précédente, une base orthogonale est toujours libre, et donc est bien
une base.

Théorème 15.29

Tout espace vectoriel de dimension finie muni d’un produit scalaire admet une base orthonor-
mée.
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On note que dans une base orthonormée, les coefficients d’un vecteur sont donnés par des produits
scalaires.

Plus précisément, si u est un vecteur de E, on peut l’écrire

u = α1e1 + · · ·+ αnen.

Mais en prenant le produit scalaire par ei, on obtient

On a donc :

Proposition 15.30

Soi t(e1, . . . , en) une base orthonormée une base orthonormée de E. Alors

u =

On peut alors décomposer les vecteurs de E

Proposition 15.31

Soit F un sous-espace vectoriel de E.

Pour tout vecteur x de E, il existe un unique couple (u, v) ∈ F × F⊥ tel que x = u + v.

Démonstration. Soit alors (e1, . . . , ep) une base orthonormale de F. On démontre le résultat
par analyse-synthèse.

• Supposons donc x = u + v avec u ∈ F et v ∈ F⊥.

On peut alors décomposer

Mais on a pour tout k

⟨u, ek⟩ =

Ainsi, on a nécessairement

• Si on prend de tels u et v, on a bien x = u + v et u ∈ F.

On a alors pour tout k :

⟨v, ek⟩ =

et on a bien v ∈ F⊥.
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Considérons deux bases orthonormées B = (e1, . . . , en) et C = ( f1, . . . , fn).

Soient alors u et v deux vecteurs de E, qu’on exprime dans les bases B et C :

u =
n

∑
i=1

αiei =
n

∑
i=1

ai fi

v =
n

∑
i=1

βiei =
n

∑
i=1

bi fi

On a alors par bilinéarité

⟨u, v⟩ =

Ainsi :

Proposition 15.32

On peut calculer le produit scalaire (et donc la norme) en utilisant les coordonnées dans n’im-
porte quelle base orthonormée.

Plus précisément, si u et v sont deux vecteurs de coordonnées respectives (u1, . . . , un) et
(v1, . . . , vn) dans une base orthonormée quelconque, alors

⟨u, v⟩ =

Les matrices de changement de bases ont alors une propriété intéressante :

Proposition 15.33

Soient B = (e1, . . . , en) et C = ( f1, . . . , fn) deux bases orthonormées de E. Alors la matrice de
passage de la base C à la base B vérifie

Démonstration. Notons xi,j les coordonnées dans la base C du vecteur ei. Soient alors i, j ∈
[1, n]. On a alors, par produit matriciel

(PPT)i,j =

On a donc bien

On peut alors étudier les matrices symétriques :
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Proposition 15.34

Soit A ∈ Mn(R) une matrice symétrique.

On suppose qu’il existe deux vecteurs propres U et V respectivement associés à deux valeurs
propres distinctes λ et µ.

Alors

Démonstration. Alors

λ⟨U, V⟩ =
=

=

=

=

=

Comme λ , µ, on a bien

On a alors le théorème suivant :

Théorème 15.35 – spectral

Toute matrice symétrique réelle est

Plus précisément, pour tout matrice A ∈ Mn(R) symétrique,

Nota : Attention, ce résultat est faux pour les matrices complexes. Par exemple, la matrice

est bien symétrique, mais n’admet que comme valeur propre, avec un

sous-espace propre de dimension 1, et n’est donc pas diagonalisable.

15.4 Distances et projection orthogonale

On travaille toujours dans l’espace vectoriel E = Rn, muni d’un produit scalaire ⟨·, ·⟩.
Dans cette partie, on confondra les points de l’espace avec les vecteurs de Rn.
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Définition 15.36

Soient u et v deux vecteurs de E. On appelle distance de u à v le réel positif

On peut alors définir la distance entre un point et une partie de l’espace.

Définition 15.37

Soient u ∈ E et A une partie de E. On appelle distance de u à A

d(u, A) =

Nota : Cette distance n’est pas nécessairement atteinte.

Dans le cas où A est un sous-espace vectoriel de E, on peut plus facilement calculer cette distance.
On a pour cela besoin de généraliser la notion de projection orthogonale.

Définition 15.38

Soit F un sous-espace vectoriel de E. On appelle alors projection orthogonale sur F tout endomor-
phisme p tel que :

Proposition 15.39

Un endomorphisme p de E est une projection orthogonale sur F si et seulement si :

•

•

Démonstration. • Soit p une projection orthogonale sur F. Soit x ∈ E, qu’on peut décom-
poser en x = u + v avec u ∈ F et v ∈ F⊥. On a alors p(x) = u ∈ F.

Soit de plus y ∈ F. On a alors

⟨p(x)− x, y⟩ = ⟨−v, y⟩
= 0

• Soit p un endomorphisme vérifiant les deux points, et soient u ∈ F et v ∈ F⊥. Alors par
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le second point

0 = ⟨p(u + v)− (u + v), p(u + v)− u⟩
= ∥p(u + v)− u∥2 − ⟨v, p(u + v)− u⟩
= ∥p(u + v)− u∥2

On a donc bien p(u + v) = u.

On a alors

Théorème 15.40

Soit F un sous-espace vectoriel de E. Soit (e1, . . . , em) une base orthonormée de F.

Il existe une unique projection orthogonale sur F, définie par

p :
E −→ E

x 7−→ .

Démonstration. On note que cet endomorphisme est bien une projection orthogonale sur F :
si u ∈ F et v ∈ F⊥, on a bien

p(u + v) =

Reste alors à montrer l’unicité.

Soit q ∈ L(E) une projection orthogonale sur F. Soit u ∈ E. Comme q(u) est dans F, il existe
donc des réels λk tels que

Les ek étant dans F, on a donc pour tout k :

et on retrouve bien les coefficients de p.

Donc q = p, et on a donc bien unicité de la projection orthogonale.

Exercice : Soit v ∈ E non nul.

Donner l’expression de la projection orthogonale sur F = Vect(v).

Les projections orthogonales ont alors des propriétés intéressantes :
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Proposition 15.41

Soit F un sous-espace vectoriel de E, et soit p la projection orthogonale sur F. Alors

•

•

•

Démonstration. • Il suffit de noter que pour tout v ∈ F, on a p(v) = v : c’est vrai pour tous
les vecteurs de la base orthonormée de F.

Comme pour tout u ∈ E, p(u) ∈ F, on a donc bien

• Soit donc v ∈ Im(p) : il existe un u ∈ E tel que v = p(u). Montrons que p(v)− v = 0.

On a , et donc on a bien

Soit maintenant u ∈ ker(p − id). On a donc . D’après la définition de
projection orthogonale, on a donc

Enfin, soit u ∈ F. On peut décomposer u sur une base orthonormée de F :

On a alors par bilinéarité du produit scalaire

p(u) =

On a donc bien

• Soit u ∈ ker(p). On va montrer que u est orthogonal à tous les vecteurs d’une base
orthonormée de F. On a alors

p(u) =

La famille (ek) étant libre,

Réciproquement, si u ∈ F⊥, alors

Corollaire 15.42

On a dim F + dim(F⊥) = n.

On a alors le résultat suivant :
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Théorème 15.43

Soit F un sous-espace vectoriel de E, et soit p la projection orthogonale sur F. On a alors pour
tout u ∈ E

•

• Pour tout f ∈ F, on a

et en particulier

Nota : On note que d’après la dernière égalité, on a pour tout vecteur u : ∥p(u)∥ ⩽ ∥u∥.

Une application célèbre de ce théorème est la détermination de la droite des moindres carrés.

On se fixe un ensemble de points Pi(xi, yi) du plan R2, et on cherche une droite qui minimise la
somme des carrés des écarts entre les points et la droite. Si la droite a pour équation y = ax + b, on
veut donc minimiser la quantité

n

∑
i=1

(yi − (axi + b))2.

Soient alors les vecteurs de Rn

X = (x1, . . . , xn)

Y = (y1, . . . , yn)

U = (1, . . . , 1).

On définit le sous-espace vectoriel de Rn F = Vect(X, U).

Alors, pour tout vecteur W ∈ F, il existe a et b tel que , et donc

d(Y, W)2 =

On cherche donc à minimiser la quantité d(Y, W), qui doit alors être minimale pour
, où p est la projection orthogonale sur le plan F.

Comme W = p(Y) est dans F, on peut l’écrire sous la forme aX + bU, et on doit donc trouver a et b
tels que

On obtient alors le système linéaire
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qu’il suffit de résoudre pour trouver la droite de régression.
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15.5 Exercices

Exercice 1

Soit ⟨·, ·⟩ un produit scalaire sur Rn.

Montrer les identités suivantes pour tous u, v ∈ Rn :

1. ⟨u, v⟩ = 1
2


∥u + v∥2 − ∥u∥2 − ∥v∥2�

2. ⟨u, v⟩ = 1
2


∥u∥2 + ∥v∥2 − ∥u − v∥2�

3. ⟨u, v⟩ = 1
4


∥u + v∥2 − ∥u − v∥2�.

Exercice 2

Soit A ∈ Mn(R).

1. Montrer que ATA est une matrice symétrique.

2. Montrer que les valeurs propres de ATA sont toutes positives.

3. Montrer que si A est non nulle, alors ATA possède une valeur propre strictement positive.

Exercice 3

Soient x1, . . . , xn ∈ R. Montrer que

 
n

∑
k=1

xk

!2

⩽ n
n

∑
k=1

x2
k .

Exercice 4

Dans les cas suivants, justifier que A est diagonalisable, et trouver une matrice P telle que PTAP
soit diagonale.

A =

 
4 3
3 −4

!
a) A =




1 −2 −2
−2 1 −2
−2 −2 1


b)

A =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


.c)
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Exercice 5

Pour tous vecteurs x et y de Rn, on note ⟨x, y⟩ le produit scalaire usuel dans Rn.

Pour tout vecteur a de Rn, on note fa l’application de Rn dans R telle que :

∀x ∈ Rn, fa(x) = ⟨x, a⟩

1. Soit a un vecteur de Rn. Montrer que fa est une application linéaire.

2. Étude d’un exemple.

On pose dans cette question (uniquement) : a = (1, 2, . . . , n).

Expliciter fa et donner une base de son noyau.

Quelle est la dimension de Ker ( fa)?

3. Pour a et b dans Rn, montrer que : fa = fb ⇐⇒ a = b.

4. Lorsque a , 0, quel est le rang de fa ? En déduire la dimension de ker ( fa) lorsque a , 0.

5. On note a = (a1, . . . , an).

Écrire la matrice de fa dans la base canonique de Rn et retrouver les résultats des questions 3
et 4.

6. Soit x et y deux vecteurs de Rn.

Montrer : x = y ⇐⇒ ∀a ∈ Rn, fa(x) = fa(y)

7. Soient a et x deux vecteurs de Rn.

Écrire un programme Python qui calcule fa(x) et qui teste si un vecteur x est dans le noyau de
fa.

8. Soit (e1, . . . , en) une base orthonormale de Rn.

Soit g une application linéaire de Rn dans R.

Montrer qu’il existe un unique a ∈ Rn tel que g = fa et que ce a est donné par a =
n
∑

k=1
g (ek) ek.

9. On note L (Rn, R) l’ensemble des applications linéaires de Rn dans R. On admet que cet
ensemble, muni des opérations usuelles d’addition et de multiplication par un réel, est un
R-espace vectoriel.

a) Montrer que ϕ : a 7→ fa est un isomorphisme de Rn dans L (Rn, R).

b) En déduire que L (Rn, R) est de dimension finie, préciser sa dimension et donner une
base.

Exercice 6 Orthonormalisation de Gram-Schmidt

On considère une base (e1, . . . , en) de E = Rn. On considère un produit scalaire ⟨·, ·⟩ sur E.

On cherche dans cet exercice un algorithme pour trouver une base orthonormée (u1, . . . , un) de E,
telle que pour tout i ∈ [1, n], ui ∈ Vect(e1, . . . , ei) et ⟨ui, ei⟩ > 0.
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1. Que vaut nécessairement u1 ?

2. On veut construire u2. On note p1 la projection orthogonale sur Vect(u1).

a) Montrer que v2 = e2 − p1(e2) est orthogonal à u1.

b) En déduire un vecteur u2 qui convient.

3. Soit k ∈ [1, n − 1]. On suppose qu’on a construit u1, . . . , uk. On note alors pi la projection
orthogonale sur Vect(ui).

a) Montrer que vk+1 = ek+1 −
k
∑

i=1
pi(ek+1) est orthogonal à tous les ui, i ∈ [1, k].

b) En déduire un vecteur uk+1 qui convient.

4. Conclure.

5. On considère la base (e1, e2, e3) = ((1, 0, 1), (1, 1, 1), (−1,−1, 0)) de R3. Construire une base
(u1, u2, u3) de R3 qui soit orthonormale pour le produit scalaire canonique, et vérifiant les
conditions précédentes.

Exercice 7

Soit ⟨·, ·⟩ un produit scalaire sur Rn. Soient p et q deux projecteurs orthogonaux de E. Montrer que
sont équivalentes

(i) ker(q) ⊆ ker(p)

(ii) pour tout x ∈ Rn, ∥p(x)∥ ⩽ ∥q(x)∥.

Exercice 8

Soit n ∈ N, n ⩾ 2. On note E = Rn muni du produit scalaire canonique noté ⟨· | ·⟩. Soit B =

(e1, . . . , en) une base orthonormale de E.

Pour une partie F de E, on définit F⊥ = {u ∈ F | ∀v ∈ F, ⟨u | v⟩ = 0}.

1. Écrire une fonction Python calculant le produit scalaire de deux vecteurs.

2. Soit f un endomorphisme de E.

On définit l’adjoint de f , noté f ∗ par :

∀u ∈ E, f ∗(u) =
n

∑
i=1

⟨u | f (ei)⟩ei.

Montrer que pour tous u et v dans E, ⟨u | f (v)⟩ = ⟨v | f ∗(u)⟩.

3. Compléter la fonction suivante qui calcule f ∗(u).
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1 import numpy as np
2

3 def adjoint(f,u):
4 n=len(u)
5 res=...
6 for i in range(n):
7 e = np.zeros(n)
8 e[...] = 1
9 res += ...

10 return res
11

4. Soit F un sous-espace vectoriel de E, et soit (u1, . . . , up) une base orthonormée de F.

Soit ϕ : E −→ Rp

v 7−→ (⟨u1 | v⟩, . . . , ⟨up | v⟩) .

a) Montrer que F⊥ est un sous-espace vectoriel de E.

b) Soit v ∈ E. Montrer que v ∈ F⊥ si et seulement si ∀k ∈ [1, p], ⟨uk | v⟩ = 0.

c) Montrer que ϕ est surjective.

d) Montrer que dim(F⊥) = n − dim(F).

5. Montrer que matB( f ∗) = matB( f )T.

6. On suppose que f = f ∗.

a) Montrer que f est diagonalisable.

b) Montrer que ker( f ) = Im( f )⊥ et ker( f )⊥ = Im( f ).


