Géométrie et produi aires

Rappels de géométrie dans le plan et l'espace

On notera P le plan euclidien, et £ I'espace euclidien.

Définition 15.1

On appelle droite la donnée de

La droite est alors I'ensemble des points M tels que

On note (AB) la droite de vecteur directeur AB passant par A. On a donc

(AB) = |

Si le réel A est limité & [0, 1], on parle alors de segment [AB].

Proposition 15.2 — Représentation paramétrique d’une droite du plan

Soit (d) une droite de vecteur directeur u = (a, b) passant par A(x,y4). Alors un point M(x, y)

appartient a la droite si et seulement si

Proposition 15.3 — Représentation paramétrique d’une droite de l'espace

Soit (d) une droite de vecteur directeur u = (a,b, ¢) passant par A(x4,Ya,z4). Alors un point

195
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M(x,y,z) appartient a la droite si et seulement si

|

Proposition 15.4 — Equation cartésienne d’une droite du plan

Soit (d) la droite de vecteur directeur u passant par A(xa,y4). Soit v = (a,b) un vecteur ortho-

gonal a u. Alors un point M(x, y) appartient a la droite si et seulement si
Définition 15.5

Soient () € P et R > 0. On appelle cercle de centre Q) et de rayon R I'ensemble

C(Q,R) =

Proposition 15.6 — I-fquation paramétrique du cercle

C(Q,R) = |
Proposition 15.7 — Equation implicite du cercle

Soient Q) (xq,yq) et R > 0. Alors

Soient Q(xq, yq) et R > 0. Alors

C(O,R) =

Réciproquement, toute courbe d’équation implicite
avec est une équation de cercle.

_

Définition 15.8

Un plan de l'espace P est défini par deux vecteurs non colinéaires et un point A. Plus précisé-
ment, si u, v sont des vecteurs et A un point, alors

P =

_
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Proposition 15.9 — Représentation paramétrique d’'un plan

Soit P le plan de vecteurs directeurs u = (a,b,c) et v = (a’,V',c") passant par A(xa,y4,24).

Alors un point M(x,y, z) appartient au plan si et seulement si

Proposition 15.10 — Equation cartésienne d’un plan

Soit P le plan de vecteurs directeurs u et v passant par A(x4,ya,zA)-
Soit w = (a, b, c) un vecteur orthogonal au plan.

Alors un point M(x,y, z) appartient au plan si et seulement si

Produits scalaires dans R”

Dans toute cette section, on travaille dans le R-espace vectoriel E = R".

Produits scalaires

Soit ¢ : E x E — R une application. On dit que ¢ est une forme bilinéaire si :

e Vv € E, u > ¢(u,v) est linéaire, i.e.

e Yu € E, v ¢(u,v) est linéaire, i.e.

Une fonction qui vérifie le premier point est dite linéaire a gauche, et une fonction qui vérifie le
second point est dite linéaire a droite.
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ExempLE: L'application
RZxR* — R

¢ (x,y), (u,v) — xu+yv

est bilinéaire. En effet, soient (x,v), (1,v)(a,b) € R>et A € R.

e Ona

¢((x,y) +A(a,b), (u,0)) =

e Ona

¢((x,y), (,0) + Aa, b)) =

Soit ¢ : E X E — R une forme bilinéaire. On dit que ¢ est symétrique si

Nota: Pour montrer qu'une application est une forme bilinéaire symétrique, il n’y a besoin de
montrer que la linéarité a gauche ou a droite, et la symétrie prouvera la linéarité par rapport a
"autre variable.

| ExempLe: Lapplication définie précédemment est symétrique.

Les formes bilinéaires symétriques se comportent comme des produits :

Proposition 15.13

Soit ¢ une forme bilinéaire symétrique sur E. Alors :

e VueE, ¢(u,0)=¢(0,u) =

e Vu,veE, p(u+v,u+v) = ) |

I Démonstration. Soitu € E. Alors v — ¢(u,v) est linéaire, donc envoie 0 sur 0.
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Siu,v € E, alors:

p(u+ov,u+v) =

Définition 15.14 — Produit scalaire

Soit ¢ : E x E — R. On dit que ¢ est un produit scalaire sur E si

e @est
o (¢est

e ¢ est définie positive, i.e.

Les notations usuelles pour les produits scalaires sont (u,v), (1 | v), u - v. |

ExempLE : L'application des exemples précédents est un produit scalaire sur R%. En effet, on a
déja vu qu’elle était bilinéaire symétrique, et si (x,y) € R?,

e((xy), (v y)) =

avec égalité si et seulement si

Nota : Un espace vectoriel muni d’un produit scalaire est dit préhilbertien. S'il est de plus de
dimension finie, on parle d’espace euclidien.

On peut en fait généraliser I'exemple précédent a tout E :

Proposition-Définition 15.15

Soit n € IN. L'application E x E — R définie par
<(xl/ s /xn)/ (]/l/ s ;]/n)> =

est un produit scalaire sur E, appelé produit scalaire canonique. |

NoTta: Onremarque que dans les cas n = 2 et n = 3, on retrouve le produit scalaire usuel dans
le plan et dans I’espace.
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NoTa: On note que si on voit u et v comme des vecteurs colonnes, on a en identifiant M (R) et

R:
(u,v) =

(u+ Av,w) =

(u,0) =

Montrons qu’elle est définie positive : soit u € E.
(u,u) =

avec égalité si et seulement si

Théoréme 15.16 — Inégalité de Cauchy-Schwarz

Démonstration. Montrons que I'application est linéaire a gauche : soient u,v,w € E, et A € R.

Montrons maintenant qu’elle est symétrique : soient u, v € E.

Soit (-, -) un produit scalaire sur E. Alors
Yu,v € E,

De maniere équivalente,

Yu,v € E,

De plus, on a égalité si et seulement si

|

NoTa: On remarque que ce résultat ressemble a celui du méme nom vu pour la covariance. On

va en effet faire une démonstration trés similaire.
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Démonstration. Siu ou v est nul, le résultat est trivial. Supposons donc u = 0 et v = 0.

On définit la fonction f sur R par
ft) =
Par positivité du produit scalaire, on a bien Vt € R, f(t) > 0, et par bilinéarité, on a

VteR, f(t) =

f estdonc qui est toujours positif;

On retrouve l'inégalité cherchée.

Supposons maintenant qu’on a 1’égalité. Le trindme f a donc une unique racine; on la note
a. Mais alors f(a) = ,etdoncau+ v =0.Doncuetv
sont colinéaires.

Inversement, si u et v sont colinéaires, on peut écrire par exemple u = Av. Dans ce cas

¢(u,0)* =

Dorénavant, on suppose qu’on a un produit scalaire (-, -) sur E.

Définition 15.17

La norme associée au produit scalaire (-, -) est I’application

jp: B R
B .

Corollaire 15.18 — Inégalité de Cauchy-Schwarz

L'inégalité de Cauchy-Schwarz se réécrit donc

Yu,v € E, |

XEMPLE : La norme associée au produit scalaire canonique sur est bien la norme euclidienne
E L duit scal R? est bien 1 lid



202 CHAPITRE 15. GEOMETRIE ET PRODUITS SCALAIRES

usuelle dans le plan :
1o )|l =

Proposition 15.19

Soit u € E. Alors

- |

Démonstration. Ces deux propriétés viennent directement de celles du produit scalaire :

[Aul] =

Siu =0, il est clair que ||u|| = 0. Si ||u]| = 0, alors (u,u) = 0, et donc u = 0. O

Proposition 15.20 — Inégalité triangulaire (de Minkowski)

Soient u,v € E. Alors
[[u+ ol

Démonstration. Tous les termes sont positifs, et on compare donc plutot les carrés.

lu +o]|* =

O

Définition 15.21

On dit qu'un vecteur u € E est unitaire s’il est de norme 1.

Siu € E est non nul, on appelle normalisé de u le vecteur unitaire |

Vecteurs orthogonaux

On rappelle qu’on travaille dans I’espace vectoriel E = R"”, muni d"un produit scalaire (-, ).
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Définition 15.22

Soient u et v deux vecteurs de E. On dit que u et v sont orthogonaux si

_

On note alors

| Nota: Onnote que la notion d’orthogonalité dépend donc du produit scalaire choisi.
| Nota: Onnoteque

| Exercice : Montrer que la réciproque est vraie : si un vecteur est orthogonal a tous les autres
vecteurs, alors c’est le vecteur nul.

On peut alors écrire le célébre théoreme :

Théoréme 15.23 — de Pythagore

Soient u et v dans E.

Alors u et v sont orthogonaux si et seulement si

_

Dans le cas de plus de deux vecteurs, un seul sens reste vrai :

Théoréme 15.24 — de Pythagore

Soient uy, ..., u, des vecteurs de E deux a deux orthogonaux. On a alors

Définition 15.25

|L

Soient F et G deux sous-espaces vectoriels de E. On dit que F et G sont orthogonaux si tout
vecteur de F est orthogonal a tout vecteur de G :

Proposition-Définition 15.26

ML

Soit F un sous-espace vectoriel de E. On appelle orthogonal de F, noté F*, ’ensemble des vecteurs
orthogonaux a tous les vecteurs de F.
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_

Alors F* est un sous-espace vectoriel de E, orthogonal a F.

¥l Bases orthonormées, matrices symétriques

Proposition 15.27

alors

Soient uy, ..., u des vecteurs non nuls de E. Si les vecteurs u; sont deux a deux orthogonaux, |

Démonstration. Supposons donc que les vecteurs u; sont deux a deux orthogonaux. Soient
ai, ..., qr € R tels que

Soit j € [1, k]. Alors par bilinéarité du produit scalaire, et les vecteurs étant deux a deux ortho-
gonaux, on a donc

Le vecteur u j étant non nul,

Ceci étant vrai pour tout j, on a bien

Définition 15.28

Soit B = (e, ...,e,) une famille de vecteurs de E. On dit que B est une base orthogonale de E si

On dit que B est une base orthonormée si

_

I Nota: D’apres la propriété précédente, une base orthogonale est toujours libre, et donc est bien
une base.

Théoréme 15.29

Tout espace vectoriel de dimension finie muni d’un produit scalaire admet une base orthonor- |
mée.
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On note que dans une base orthonormée, les coefficients d'un vecteur sont donnés par des produits
scalaires.

Plus précisément, si u est un vecteur de E, on peut 1’écrire
u = “161“‘"‘"{’0‘11811.

Mais en prenant le produit scalaire par e;, on obtient

On a donc:

Proposition 15.30

Soi t(ey, ..., e,) une base orthonormée une base orthonormée de E. Alors

On peut alors décomposer les vecteurs de E

Proposition 15.31

Soit F un sous-espace vectoriel de E.

Pour tout vecteur x de E, il existe un unique couple (1,v) € F x F- tel que x = u + v. |

Démonstration. Soit alors (e, ...,e,) une base orthonormale de F. On démontre le résultat
par analyse-synthese.

e Supposons donc x = u +vavecu € Fetv € F*.
On peut alors décomposer

Mais on a pour tout k

(u, e) =
Ainsi, on a nécessairement

e Sionprend detelsuetv,onabienx =u+vetucF.

On a alors pour tout k :

<’U, ek> =

eton abienv € Ft.
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| i |

Considérons deux bases orthonormées B = (ey,...,e,) etC = (f1,..., fu).

Soient alors u et v deux vecteurs de E, qu’on exprime dans les bases B et C :

n n
u=Yy wie;=)_af;
i=1 i=1
n n
0= PBiei=)_bif;
i=1 i=1

On a alors par bilinéarité

(u,v) =

Ainsi :

Proposition 15.32

On peut calculer le produit scalaire (et donc la norme) en utilisant les coordonnées dans n’im-
porte quelle base orthonormée.

Plus précisément, si u et v sont deux vecteurs de coordonnées respectives (uy,...,u,) et
(v1,...,v,) dans une base orthonormée quelconque, alors

(u,0) =

_

Les matrices de changement de bases ont alors une propriété intéressante :

Proposition 15.33

passage de la base C a la base B vérifie

Soient B = (eq,...,e4) et C = (f1,..., fu) deux bases orthonormées de E. Alors la matrice de |

Démonstration. Notons x;; les coordonnées dans la base C du vecteur e;. Soient alors 7,j €
[1,7]. On a alors, par produit matriciel

(PP);; =

On a donc bien O

On peut alors étudier les matrices symétriques :
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Proposition 15.34

Soit A € M,,(R) une matrice symétrique.

On suppose qu'il existe deux vecteurs propres U et V respectivement associés a deux valeurs
propres distinctes A et p.

Alors |

Démonstration. Alors

MU, V) =

Comme A # y, on a bien O

On a alors le théoréme suivant :

Théoréme 15.35 — spectral

Toute matrice symétrique réelle est

Plus précisément, pour tout matrice A € M, (R) symétrique,

|

NoTa : Attention, ce résultat est faux pour les matrices complexes. Par exemple, la matrice
est bien symétrique, mais n’admet que comme valeur propre, avec un

sous-espace propre de dimension 1, et n’est donc pas diagonalisable.

LWl Distances et projection orthogonale

On travaille toujours dans 1'espace vectoriel E = R”, muni d'un produit scalaire (-, -).

Dans cette partie, on confondra les points de 'espace avec les vecteurs de R".
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Définition 15.36

Soient u et v deux vecteurs de E. On appelle distance de u a v le réel positif

_

On peut alors définir la distance entre un point et une partie de 1'espace.

Définition 15.37

Soient u € E et A une partie de E. On appelle distance de ua A

_

d(u,A) =
| Nota: Cette distance n’est pas nécessairement atteinte.

Dans le cas ot A est un sous-espace vectoriel de E, on peut plus facilement calculer cette distance.
On a pour cela besoin de généraliser la notion de projection orthogonale.

Définition 15.38

Soit F un sous-espace vectoriel de E. On appelle alors projection orthogonale sur F tout endomor-
phisme p tel que :

Proposition 15.39

|L

Un endomorphisme p de E est une projection orthogonale sur F si et seulement si :

_

Démonstration. e Soit p une projection orthogonale sur F. Soit x € E, qu’on peut décom-
poserenx =u+vavecu € Fetv € F.Onaalors p(x) = u € F.

Soit de plus y € F. On a alors

(p(x) —x,y) = (—v,y)
=0

e Soit p un endomorphisme vérifiant les deux points, et soient u € F etv € F-. Alors par
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le second point

0= (p(u+v)—(u+0),plu+ov)—u)
= |lp(u+0) —ul* = (o, p(u+v) —u)
= Ip(u+ o) —ul)?

On a donc bien p(u +v) = u.

On a alors

Théoréme 15.40

Soit F un sous-espace vectoriel de E. Soit (e, ..., ;) une base orthonormée de F.
Il existe une unique projection orthogonale sur F, définie par

E — E

P: x — : |

Démonstration. On note que cet endomorphisme est bien une projection orthogonale sur F :
siu € Fetv € F+, on a bien

pluto)=

Reste alors a montrer 'unicité.

Soit ¢ € L(E) une projection orthogonale sur F. Soit # € E. Comme g(u) est dans F, il existe
donc des réels Ay tels que

Les ¢ étant dans F, on a donc pour tout k :

et on retrouve bien les coefficients de p.

Donc q = p, et on a donc bien unicité de la projection orthogonale. O

Exercice: Soit v € E non nul.

Donner l'expression de la projection orthogonale sur F = Vect(v).

Les projections orthogonales ont alors des propriétés intéressantes :
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Proposition 15.41

Soit F un sous-espace vectoriel de E, et soit p la projection orthogonale sur F. Alors

- |

Démonstration. e Il suffit de noter que pour toutv € F,ona p(v) = v: c’est vrai pour tous
les vecteurs de la base orthonormée de F.

Comme pour tout u € E, p(u) € F, on a donc bien

e Soitdonc v € Im(p) : il existe un u € E tel que v = p(u). Montrons que p(v) —v = 0.

On a , et donc on a bien

Soit maintenant u € ker(p —id). On a donc . D’apres la définition de
projection orthogonale, on a donc

Enfin, soit © € F. On peut décomposer u sur une base orthonormée de F :

On a alors par bilinéarité du produit scalaire

p(u) =

On a donc bien

e Soit u € ker(p). On va montrer que u est orthogonal & tous les vecteurs d’une base
orthonormée de F. On a alors

p(u) =

La famille (e ) étant libre,

Réciproquement, siu € F*,alors

Corollaire 15.42

Onadim F + dim(F+) = n.

On a alors le résultat suivant :
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Théoréme 15.43

Soit F un sous-espace vectoriel de E, et soit p la projection orthogonale sur F. On a alors pour
toutu € E

e Pourtout f € F,ona

et en particulier

|

| Nota: Onnote que d’apres la derniere égalité, on a pour tout vecteur u : || p(u)|| < |Ju.

Une application célebre de ce théoreme est la détermination de la droite des moindres carrés.

On se fixe un ensemble de points P;(x;,y;) du plan R?, et on cherche une droite qui minimise la
somme des carrés des écarts entre les points et la droite. Si la droite a pour équation y = ax + b, on
veut donc minimiser la quantité

Y (i — (ax; + b)),

i=1
Soient alors les vecteurs de R"
X =(x1,...,%)
Y= Yn)
u=(1,...,1).
On définit le sous-espace vectoriel de R" F = Vect(X, U).

Alors, pour tout vecteur W € F, il existe a et b tel que , et donc

d(Y,W)? =

N

On cherche donc a minimiser la quantité d(Y,W), qui doit alors étre minimale pour
, ou p est la projection orthogonale sur le plan F.

Comme W = p(Y) est dans F, on peut l’écrire sous la forme aX + bU, et on doit donc trouver a et b
tels que

On obtient alors le systeme linéaire
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qu’il suffit de résoudre pour trouver la droite de régression.
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W8 Exercices

Exercice 1
Soit (-, -) un produit scalaire sur R".

Montrer les identités suivantes pour tous u, v € R" :

—_
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I
N|=

(e + ol = [lul® = [[v]|?)

(el + llol* = [l = v[|?)
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~
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@
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~

I
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(llu+ o[> = flu — o|?).

Exercice 2

Soit A € M, (R).

1. Montrer que AT A est une matrice symétrique.
2. Montrer que les valeurs propres de AT A sont toutes positives.

3. Montrer que si A est non nulle, alors AT A posséde une valeur propre strictement positive.

Exercice 3

Soient x1, ..., x, € R. Montrer que

Exercice 4

Dans les cas suivants, justifier que A est diagonalisable, et trouver une matrice P telle que PTAP
soit diagonale.

1 -2 -2

by A=|-2 1 =2
2 -2 1

&
RN
Il

VS
W =
|

ka
N~

Ny
b
I
O T G S g )
I
—_ e
O =y
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Exercice 5
Pour tous vecteurs x et y de R”, on note (x, y) le produit scalaire usuel dans R".

Pour tout vecteur a de R", on note f, 'application de R" dans R telle que :

Vx € R", fa(x) = (x,a)

1. Soit a un vecteur de R". Montrer que f, est une application linéaire.

2. Etude d’un exemple.
On pose dans cette question (uniquement) : a = (1,2,...,n).
Expliciter f, et donner une base de son noyau.

Quelle est la dimension de Ker (f,)?
3. Pour a et b dans R", montrer que : f, = f, <= a = b.
4. Lorsque a = 0, quel est le rang de f,? En déduire la dimension de ker (f,) lorsque a = 0.

5. Onnotea = (ay,...,an).
Ecrire la matrice de f, dans la base canonique de R” et retrouver les résultats des questions 3
et4.

6. Soit x et y deux vecteurs de R".

Montrer : x = y <= Va € R", f,(x) = fa(y)

7. Soient a et x deux vecteurs de R".
Ecrire un programme Python qui calcule f,(x) et qui teste si un vecteur x est dans le noyau de
fa-

8. Soit (ey, ..., ey) une base orthonormale de R".

Soit g une application linéaire de R dans R.

n
Montrer qu’il existe un unique a € R" tel que g = f, et que ce a estdonné para = ) g (e) ex.
k=1

9. On note £ (R",R) I'ensemble des applications linéaires de R” dans R. On admet que cet
ensemble, muni des opérations usuelles d’addition et de multiplication par un réel, est un
R-espace vectoriel.

a) Montrer que ¢ : a — f, est un isomorphisme de R" dans £ (R", R).

b) En déduire que £ (R",R) est de dimension finie, préciser sa dimension et donner une
base.

Exercice 6 Orthonormalisation de Gram-Schmidt
On considere une base (e, . ..,e,) de E = R". On considére un produit scalaire (-, -) sur E.

On cherche dans cet exercice un algorithme pour trouver une base orthonormée (u,...,u,) de E,
telle que pour tout i € [1,n], u; € Vect(ey, ..., e;) et (u;,e;) > 0.
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1. Que vaut nécessairement 11 ?
2. On veut construire u,. On note p; la projection orthogonale sur Vect (7).

a) Montrer que v, = e; — p1(e2) est orthogonal a 1.

b) En déduire un vecteur u, qui convient.

3. Soit k € [1,n — 1]. On suppose qu’on a construit uy, ..., u;. On note alors p; la projection
orthogonale sur Vect(u;).
k

a) Montrer que vx,1 = exy1 — Y. pi(ex+1) est orthogonal a tous les u;, i € [1, k].
i=1

b) En déduire un vecteur 1,1 qui convient.
4. Conclure.

5. On considere la base (e1,ez,e3) = ((1,0,1),(1,1,1),(—1,—1,0)) de R3. Construire une base
(u1,up,u3) de R® qui soit orthonormale pour le produit scalaire canonique, et vérifiant les
conditions précédentes.

Exercice 7

Soit (-, -) un produit scalaire sur R”. Soient p et g deux projecteurs orthogonaux de E. Montrer que
sont équivalentes

(i) ker(q) C ker(p)

(i) pour tout x € R”, ||p(x)[| < [l9(x)]

Exercice 8

Soit n € N, n > 2. On note E = R” muni du produit scalaire canonique noté (- | -). Soit B =
(e1,...,e,) une base orthonormale de E.

Pour une partie F de E, on définit FX = {u € F| Vv € F, (u | v) = 0}.

1. Ecrire une fonction Python calculant le produit scalaire de deux vecteurs.
2. Soit f un endomorphisme de E.
On définit I’adjoint de f, noté f* par :
n
Vu€eE, f*(u) =) (ul f(e))
i=1

Montrer que pour tous u et vdans E, (u | f(v)) = (v | f*(u)).

3. Compléter la fonction suivante qui calcule f*(u).
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import numpy as np

def adjoint(f,u):

n=len(u)

res=...

for i in range(n):
e = np.zeros(n)
e[...] =1
res += ...

return res

4. Soit F un sous-espace vectoriel de E, et soit (uy, ..., up) une base orthonormée de F.

— RP

. E
Soit¢: o ((ur | 0),..., (up | 0)) -

a) Montrer que F L estun sous-espace vectoriel de E.
b) Soit v € E. Montrer que v € F* si et seulement si Vk € [1, p], (ux | v) = 0.
c) Montrer que ¢ est surjective.

d) Montrer que dim(F!) = n — dim(F).
5. Montrer que matg(f*) = matg(f)".
6. On suppose que f = f*.

a) Montrer que f est diagonalisable.

b) Montrer que ker(f) = Im(f)~* et ker(f)* = Im(f).



