Devoir surveillé 1

Angers Le Fresne: BCPST 2

14 Septembre 2024

Durée de l'épreuve : 2h. Les calculatrices sont interdites pour cette épreuve.

Exercice : Étude d'une suite numérique

Considérons la suite (u_n) définie par : $\begin{cases} u_0 = e - 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = (n+1)u_n - 1 \end{cases}$

- **1.** Étude mathématique de la suite u.
 - **1.1.** Montrer par récurrence que $\forall n \in \mathbb{N}, \ u_n = \int_0^1 (1-t)^n e^t dt$.
 - **1.2.** Montrer que la suite u est positive et décroissante. En déduire que la suite u converge.
 - **1.3.** Montrer que pour tout entier naturel $n: \frac{1}{n+1} \le u_n \le \frac{e}{n+1}$.
 - **1.4.** Déterminer la limite de la suite u.
- **2.** Recherche d'un équivalent de u_n .

On définit les suites (S_n) et (S'_n) par :

$$\forall n \in \mathbb{N}^*, \ S_n = \sum_{k=0}^n \frac{1}{k!} \text{ et } S'_n = S_n + \frac{1}{nn!}.$$

- **2.1.** Montrer par récurrence que : $\forall n \in \mathbb{N}^*$, $u_n = n!(e S_n)$.
- **2.2.** Montrer que les suites (S_n) et (S'_n) sont adjacentes.
- **2.3.** En déduire que les suites (S_n) et (S'_n) convergent vers la même limite.
- **2.4.** Déterminer la limite commune des suites (S_n) et (S'_n) .
- **2.5.** Déduire de l'étude précédente que : $\forall n \in \mathbb{N}^*, \ \frac{1}{(n+1)!} \leqslant e S_n \leqslant \frac{1}{nn!}.$
- **2.6.** Montrer alors que : $\lim_{n\to+\infty} nu_n = 1$, autrement dit que : $u_n \sim \frac{1}{n}$.

Exercice: Faire le bon pari

On dispose d'une pièce faussée et de deux dés équilibrés D_1 et D_2 .

La probabilité d'obtenir pile avec la pièce est de $\frac{1}{3}$.

Les deux dés ont chacun 6 faces, le dé D_1 a quatre faces rouges et deux blanches, le dé D_2 a deux faces rouges et quatre blanches.

L'expérience est la suivante :

• nous commençons par jeter une pièce;

- si nous obtenons PILE, nous choisissons le dé D_1 , sinon, nous choisissons le dé D_2 , choix définitif pour la suite de l'expérience,
- ensuite nous jetons plusieurs fois le dé choisi et pour chaque lancer, nous notons la couleur obtenue.

Nous nommons les évènements suivants :

- D_1 est l'événement : « nous jouons avec le dé D_1 »,
- D_2 est l'événement : « nous jouons avec le dé D_2 »,
- Pour tout entier naturel n, R_n est l'évènement : « nous avons obtenu une face rouge au n-ième lancer du dé choisi ».
- **1.** Quelles sont les valeurs de $\mathbb{P}(D_1)$ et $\mathbb{P}(D_2)$? Démontrer que $\{D_1, D_2\}$ constitue un système complet d'évènements.
- **2.** Soit *n* appartenant à \mathbb{N}^* . Quelles sont les valeurs de $\mathbb{P}_{D_1}(R_n)$? de $\mathbb{P}_{D_2}(R_n)$?
- **3.** Calculer $\mathbb{P}(R_1)$.
- **4.** Établir un lien entre les probabilités $\mathbb{P}_{D_1}(R_1)$, $\mathbb{P}_{D_1}(R_2)$ et $\mathbb{P}_{D_1}(R_1 \cap R_2)$. En déduire la valeur de $\mathbb{P}(R_1 \cap R_2)$.
- 5. Démontrer que pour tout entier naturel non nul n:

$$\mathbb{P}(R_1 \cap R_2 \cap \cdots \cap R_n) = \frac{2^n + 2}{3^{n+1}}$$

En déduire pour tout n de \mathbb{N}^* la valeur de $\mathbb{P}_{R_1 \cap R_2 \cap \cdots \cap R_n}(R_{n+1})$.

6. Calculer $\mathbb{P}_{R_1 \cap R_2}(D_1)$ puis, de manière générale, pour tout entier naturel non nul n, démontrer que :

$$\mathbb{P}_{R_1 \cap R_2 \cap \cdots \cap R_n}(D_1) = \frac{2^n}{2^n + 2}$$

7. Soit n appartenant à \mathbb{N}^* . Après n lancers ayant tous amené la face rouge, vaut-il mieux parier sur le fait que le dé est le dé D_1 ou sur le fait d'avoir une face rouge au lancer suivant?

Problème : Différentes méthodes de calcul des puissances d'une matrice

Tout au long de ce problème, M désigne la matrice carrée d'ordre 3 à coefficients réels définie par :

$$M = \begin{pmatrix} -7 & 0 & -8 \\ 4 & 1 & 4 \\ 4 & 0 & 5 \end{pmatrix},$$

et I_3 désigne la matrice identité d'ordre 3, c'est-à-dire : $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

1. Une première méthode pour le calcul des puissances de M.

Considérons la matrice A définie par : $A = \frac{1}{4}(M - I_3)$.

- **1.1.** Calculer A puis A^2 .
- **1.2.** Exprimer la matrice *M* en fonction de la matrice *A*.
- **1.3.** Montrer que pour tout entier n appartenant à $\{0,1,2\}$, il existe un réel u_n tel que : $M^n = I_3 + u_n A$. *Nous rappelons que* : $M^0 = I_3$.

- **1.4.** Montrer par récurrence que pour tout entier naturel n, il existe un réel u_n tel que : $M^n = I_3 + u_n A$. La preuve mettra en avant la relation : $\forall n \in \mathbb{N}$, $u_{n+1} = -3u_n + 4$.
- **1.5.** Considérons la suite (v_n) définie par : $v_n = u_n 1$.
 - **1.5.1.** Montrer que la suite (v_n) est une suite géométrique dont on précisera la raison.
 - **1.5.2.** En déduire pour tout entier naturel n une expression de v_n en fonction de n.
 - **1.5.3.** En déduire alors, pour tout entier naturel n, une expression de u_n en fonction de n.
- **1.6.** Pour tout n appartenant à \mathbb{N} , en déduire une écriture matricielle de M^n ne faisant intervenir que l'entier n.
- **2.** Une seconde méthode de calcul des puissances de *M*.
 - **2.1.** Montrer qu'il existe une unique matrice J appartenant à $\mathcal{M}_3(\mathbb{R})$ telle que : $M = 4J 3I_3$.
 - **2.2.** Calculer J^2 , puis pour tout entier naturel non nul n, J^n .
 - **2.3.** Soit *n* un entier naturel non nul.
 - **2.3.1.** Énoncer la formule du binôme pour les matrices. *Aucune preuve n'est attendue*.

2.3.2. Montrer que :
$$M^n = (-3)^n I_3 + \left(\sum_{k=1}^n \binom{n}{k} 4^k (-3)^{n-k}\right) J$$
.

- **2.3.3.** Montrer que : $\sum_{k=1}^{n} {n \choose k} 4^k 3^{n-k} = 1 (-3)^n$.
- **2.3.4.** En déduire une expression de M^n en fonction de n, I_3 et J, puis une écriture matricielle de M^n ne faisant intervenir que l'entier n.