Problème 1

Partie A: Une situation faisant intervenir une matrice de $\mathcal{M}_3(\mathbb{R})$

1. On note $A_{i,j}$ l'événement « Le système est dans l'état i à l'heure j » La probabilité d'être dans l'état E_1 au bout de trois heures est donc

$$\mathbb{P}(A_{1,1} \cap A_{1,2} \cap A_{1,3}) = p^3$$

en utilisant la formule des probabilités composées.

De même, les différents cas pour être en E_3 au bout de trois heures sont $E_1 \to E_1 \to E_2 \to E_3$, $E_1 \to E_2 \to E_3$ et $E_1 \to E_2 \to E_3 \to E_3$, et on trouve donc une probabilité de $2pq^2 + q^2$.

Seuls les deux premiers cas permettent d'avoir E_3 exactement au bout de trois heures, on a donc une probabilité de $2pq^2$.

2. (a) Par la formule des probabilités totales appliquée au système complet d'événements $\{A_{1,k},\ A_{2,k},\ A_{3,k}\}$, on a donc

$$u_{k+1} = \mathbb{P}_{A_{1,k}}(A_{1,k+1})u_k + \mathbb{P}_{A_{2,k}}(A_{1,k+1})v_k + \mathbb{P}_{A_{3,k}}(A_{1,k+1})w_k = pu_k,$$

seule la première probabilité conditionnelle étant non nulle.

(b) De la même façon, on trouve avec la formule des probabilités totales appliquée au même système complet d'événements

$$v_{k+1} = qu_k + pv_k$$
 et $w_{k+1} = qv_k + w_k$.

On retrouve bien la relation demandée.

- (c) Montrons par récurrence que pour tout $k \in \mathbb{N}$, $\begin{pmatrix} u_k \\ v_k \\ w_k \end{pmatrix} = A^k \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix}$.
 - Pour k = 0, c'est évident.
 - Soit $k \in \mathbb{N}$, et supposons l'égalité vraie pour k. Alors

$$\begin{pmatrix} u_{k+1} \\ v_{k+1} \\ w_{k+1} \end{pmatrix} = A \begin{pmatrix} u_k \\ v_k \\ w_k \end{pmatrix} = A^{k+1} \begin{pmatrix} u_0 \\ v_0 \\ w_0 \end{pmatrix}.$$

Par récurrence, on a bien le résultat voulu.

Ainsi, en partant des différents états initiaux possibles, on remarque que $a_{i,j}(k)$ correspond à la probabilité de passer de l'état E_j à l'état E_i en k heures.

Partie B: Puissances successives d'une matrice

- 1. (a) On note qu'une matrice M est dans \mathcal{E}_3 si et seulement si $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} M = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$. Montrons alors la propriété voulue par récurrence : soit $M \in \mathcal{E}_3$.
 - La matrice $M^0 = I_3$ est bien dans \mathcal{E}_3 .
 - Soit $k \in \mathbb{N}$, et supposons $M^k \in \mathcal{E}^3$. Alors

$$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} M^{k+1} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} M^k M$$
$$= \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} M \quad \operatorname{car} M^k \in \mathcal{E}_3$$
$$= \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

Par récurrence, on a bien le résultat voulu.

(b) On a alors

$$M^{\mathbf{T}}v = (v^{\mathbf{T}}M)^{\mathbf{T}} = v$$

d'après la remarque précédente.

Ainsi, comme v est non nul, il est vecteur propre de $M^{\mathbf{T}}$ associé à 1, qui est donc valeur propre de $M^{\mathbf{T}}$.

Ainsi, $M^{\mathbf{T}} - I_3$ n'est pas inversible, et en passant à la transposée (qui conserve le rang), on a donc $M - I_3$ non inversible, et donc $1 \in \text{Spec}(M)$.

2. (a) A est une matrice triangulaire, donc ses valeurs propres sont ses coefficients diagonaux, 1 et p. 1 n'apparaît qu'une fois sur la diagonale, donc le sous-espace propre associé est de dimension 1; on a donc

$$E_1(A) = \text{Vect} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

En résolvant le système, on note aussi que

$$E_p(A) = \text{Vect} \begin{pmatrix} 0\\1\\-1 \end{pmatrix}.$$

(b) 0 n'est pas dans le spectre de A, donc A est inversible. En revanche, la somme des dimensions de ses sous-espaces propres ne vaut que 2, et donc elle n'est pas diagonalisable.

- 3. (a) Montrons-le par récurrence sur $k \in \mathbb{N}$:
 - Pour k = 0, on retrouve bien la matrice identité, avec $a_0 = 0$.
 - Soit $k \in \mathbb{N}$; supposons la relation vérifiée pour ce k. Alors

$$A^{k+1} = A^k A$$

$$= \begin{pmatrix} p^{k+1} & 0 & 0 \\ kqp^{k+1} & p^k & 0 \\ pa_k + q(1-p^k) & p - p^{k+1} + q & 1 \end{pmatrix}$$

En posant $a_{k+1} = pa_k + q(1 - p^k)$, on a bien le résultat voulu.

On a donc bien le résultat voulu.

On note que comme $A \in \mathcal{E}_3$, on a $A^k \in \mathcal{E}_3$, et donc nécessairement $a_k = 1 - p^k - kqp^{k-1}$.

(b) On a $p, q \in]0, 1[$, donc les suites (p^k) , (q^k) et kp^{k-1} convergent toutes les trois vers 0.

Ainsi, lasuite (A^k) converge, vers la matrice $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

Partie C: Diagonalisations de matrices

1. (a) On note qu'un vecteur $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ est dans $\ker(u)$ si et seulement si x+y+z=0, et donc si et seulement si $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot v = 0$.

 $\ker(u)$ est donc bien l'ensemble des vecteurs orthogonaux à v.

Cet ensemble est un plan, donc dim ker(u) = 2, et par théorème du rang, on obtient rg(u) = 1.

(b) La matrice L est triangulaire supérieure, donc ses valeurs propres sont 0 et 1; on a bien $1 \in \operatorname{Spec}(u)$.

On a par exemple $L \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, et $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \neq 0$, donc c'est un vecteur propre de u associé à 1.

2. Ainsi, $\dim E_1(u) = 1$ et $\dim E_0(u) = \dim \ker(u) = 2$, donc l'endomorphisme u est diagonalisable.

Des vecteurs propres linéairement indépendants associés à 0 sont par exemple $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

On a donc bien $L = PDP^{-1}$, avec

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

On trouve facilement $e_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ et $e_2 = -\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, on trouve donc la matrice de passage inverse

$$P^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

- 3. (a) On calcule : $P^{-1}BP = \begin{pmatrix} p & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & 1 \end{pmatrix}$, et donc la matrice B est bien diagonalisable.
 - (b) Une rapide récurrence permet de montrer que

$$B^k = P \begin{pmatrix} p^k & 0 & 0 \\ 0 & p^k & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1},$$

puis après calculs :

$$B^k = \begin{pmatrix} p^k & 0 & 0 \\ 0 & p^k & 0 \\ 1 - p^k & 1 - p^k & 1 \end{pmatrix}.$$

3

(c) On a $C^2=0$. On note que A=B+C, et comme B et C commutent, par binôme de Newton, on a donc

$$A^{k} = \sum_{i=0}^{k} {k \choose i} C^{i} B^{k-i} = B^{k} + kCB^{k-1}.$$

(d) On retrouve bien la bonne expression.

Partie D: Calcul d'une espérance

- 1. Comme $p \in]-1,1[$, cette série converge, et vaut $\frac{2}{a^3}$.
- 2. (a) Il faut au moins deux heures pour aller dans l'état E_3 , et donc

$$\mathbb{P}(X=0) = \mathbb{P}(X=1) = 0.$$

On a alors

$$\mathbb{P}(X=3) = q^2.$$

(b) On a $\mathbb{P}(X = k) = w_k - w_{k-1}$. Or pour tout k, on a vu que

$$\begin{pmatrix} u_k \\ v_k \\ w_k \end{pmatrix} = A^k \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} p^k \\ kqp^{k-1} \\ a_k \end{pmatrix},$$

et donc on a bien le résultat voulu

(c) La variable X admet une espérance si et seulement si la série $\sum k(a_k-a_{k-1})$ converge absolument, c'est-à-dire si la série $\sum k(k-1)q^2p^{k-2}$ converge.

Or elle converge d'après la question D1, et on a donc

$$\mathbb{E}(X) = \frac{2}{q}.$$

Problème 2

Partie A: Des lois exponentielles

- 1. (a) Soit φ_n la proposition « La variable X_k admet un moment d'ordre n égal à $\frac{n!}{\lambda^n}$ ».
 - Il est clair qu'elle admet un moment d'ordre 0, qui vaut 1.
 - Soit $n \in \mathbb{N}$; on suppose φ_n . Soit alors A > 0. On a, par théorème d'intégration par parties appliqué aux fonctions $x \mapsto -e^{-\lambda x}$ et $x \mapsto x^{n+1}$ qui sont de classe \mathcal{C}^1 sur le segment [0, A]:

$$\int_0^A x^{n+1} \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} x^{n+1} \right]_0^A + \frac{n+1}{\lambda} \int_0^A x^n \lambda e^{-\lambda x} dx$$

$$\xrightarrow[A \to +\infty]{} \frac{n+1}{\lambda} m_n(X_k)$$

par croissances comparées, théorème de transfert et φ_n . Ainsi, X_k admet un moment d'ordre n+1 qui vaut $\frac{n+1}{\lambda}\frac{n!}{\lambda^n}=\frac{(n+1)!}{\lambda^{n+1}}$.

Par récurrence, on a bien le résultat voulu.

- (b) On a $\frac{1}{m_n(X_k)} = \frac{\lambda^n}{n!}$; on reconnait le terme général d'une série exponentielle, qui est convergente. Sa somme est alors e^{λ} .
- 2. (a) Il est clair que si t < 0, $\overline{F}_{X_1}(t) = 1$. Si $t \geqslant 0$, on a alors $\overline{F}_{X_1}(t) = \mathbb{P}(X_1 \geqslant t) = e^{-\lambda t}$.
 - (b) Soit $t \in \mathbb{R}$. On a

$$\begin{split} \overline{F}_{Y_p}(t) &= \mathbb{P}(\min(X_1, \dots, x_p) > t) \\ &= \mathbb{P}\left(\bigcap_{i=1}^p X_i > t\right) \\ &= \prod_{i=1}^p \mathbb{P}(X_i > t) \quad \text{par indépendance} \\ &= \begin{cases} 1 & \text{si } t < 0 \\ e^{-p\lambda t} & \text{si non} \end{cases} \end{split}$$

On a alors $F_{Y_p}(t) = \begin{cases} 0 & \text{si } t < 0 \\ 1 - e^{-p\lambda t} & \text{si non} \end{cases}$, et on reconnait la fonction de répartition d'une loi exponentielle de paramètre $p\lambda$. Ainsi, $Y_p \hookrightarrow \mathcal{E}(p\lambda)$.

(c) On déduit directement de la loi de Y_p qu'elle admet une espérance et une variance, et

$$\mathbb{E}(Y_p) = \frac{1}{\lambda p} \text{ et } \mathbb{V}(Y_p) = \frac{1}{\lambda^2 p^2}.$$

- 3. On a dans ces questions p=2 et $\lambda=\frac{1}{2}$.
 - (a) On a $\mathbb{P}(X_2 \leq 2) = 1 e^{-1}$.
 - (b) Il est clair que la probabilité cherchée est celle que le premier technicien intervienne pendant moins d'une heure : $\mathbb{P}(X_1 \leqslant 1) = 1 e^{-\frac{1}{2}}$.
 - (c) On a

$$\begin{split} \mathbb{P}_{[X_2 \leqslant 2]}(Y_2 \leqslant 1) &= 1 - \mathbb{P}_{[X_2 \leqslant 2]}(Y_2 > 1) \\ &= 1 - \frac{\mathbb{P}(Y_2 > 1 \cap X_2 \leqslant 2)}{\mathbb{P}(X_2 \leqslant 2)} \\ &= 1 - \frac{\mathbb{P}(X_1 > 1)\mathbb{P}(1 < X_2 \leqslant 2)}{\mathbb{P}(X_2 \leqslant 2)} \\ &= 1 - \frac{\left(1 - e^{-\frac{1}{2}}\right)\left(e^{-\frac{1}{2}} - e^{-1}\right)}{1 - e^{-1}} \\ &= \frac{1 - e^{-\frac{3}{2}} - e^{-\frac{1}{2}} + e^{-1}}{1 - e^{-1}} \end{split}$$

Partie B: Calcul d'une limite d'une probabilité

1. (a) Il est clair que $F_{Z_2}(t) = 0$ si t < 0. Soit alors $t \ge 0$.

$$\begin{split} F_{Z_2}(t) &= \mathbb{P}(Z_2 \leqslant t) \\ &= \mathbb{P}(X_1 \leqslant t \cap X_2 \leqslant t) \\ &= \mathbb{P}(X_1 \leqslant t)^2 \quad \text{par indépendance} \\ &= \left(1 - e^{-\lambda t}\right)^2 \end{split}$$

La fonction \mathbb{Z}_2 est alors continue et \mathcal{C}^1 sur \mathbb{R}^* , et on vérifie facilement la continuité en 0. Ainsi, \mathbb{Z}_2 est à densité, avec une densité donnée par

$$f_{Z_2}(t) = \begin{cases} 0 & \text{si } t < 0 \\ 2\lambda e^{-\lambda x} \left(1 - e^{-\lambda x}\right) & \text{si non} \end{cases}.$$

(b) Sur \mathbb{R}_+ , on a alors

$$tf_{Z_2}(t) = 2t\lambda e^{-\lambda x} - 2t\lambda e^{-2\lambda x}.$$

Or les intégrales des deux termes sont convergentes (on reconnait des espérances de lois exponentielles). Ainsi, par linéarité, Z_2 admet une espérance, et

$$\mathbb{E}(Z_2) = \frac{2}{\lambda} - \frac{1}{2\lambda} = \frac{3}{2\lambda}.$$

On a alors bien $\mathbb{E}(Y_2) + \mathbb{E}(Z_2) = \frac{2}{\lambda} = \mathbb{E}(X_1 + X_2)$.

On aurait pu le savoir en notant que $X_1 + X_2 = Y_2 + Z_2$.

(c) Comme dans la question précédente,

$$\forall t \geqslant 0, \ t^2 f_{Z_2}(t) = 2t^2 \lambda e^{-\lambda x} - 2t^2 \lambda e^{-2\lambda x},$$

et on reconnait deux fonctions dont les intégrales convergent.

Ainsi, Z_2 admet une variance, et par formule de König-Huygens,

$$\mathbb{V}(Z_2) = \mathbb{E}(Z_2^2) - \mathbb{E}(Z)^2 = \frac{7}{2\lambda^2} - \frac{9}{4\lambda^2} = \frac{5}{4\lambda^2}.$$

2. (a) On a $\mathbb{P}(Z_2 \ge x + n) = 1 - (1 - e^{-\lambda(n+x)})^2 = e^{-\lambda(n+x)} (2 - e^{-\lambda(n+x)}).$

Ainsi, $\mathbb{P}(Z_2 \geqslant n+x) \sim 2e^{-\lambda(n+x)}$, qui est le terme général d'une suite géométrique de premier terme $2e^{-\lambda x}$ et de raison $e^{-\lambda}$.

(b) On a

$$\mathbb{P}_{[Z_2 \geqslant n]}(Z_2 \geqslant n+x) = \frac{\mathbb{P}(Z_2 \geqslant n+x)}{\mathbb{P}(Z_2 \geqslant n)}$$
$$\sim \frac{2e^{-\lambda(n+x)}}{2e^{-\lambda n}}$$
$$\sim e^{-\lambda x} = \mathbb{P}(X_1 \geqslant x)$$

On a donc bien la limite voulue.

(c) La loi exponentielle étant sans mémoire, on a bien le même résultat pour X_1 (qui reste vrai sans même prendre la limite).

Partie C: Sommes de variables aléatoires

1. (a) La variable X_2 étant positive, il est clair que F_{aX_2+b} est nulle sur $]-\infty,b[$. Soit donc $t\geqslant b$. On a

$$F_{aX_2+b}(t) = \mathbb{P}(aX_2 + b \leqslant t)$$

$$= \mathbb{P}\left(X_2 \leqslant \frac{t-b}{a}\right)$$

$$= F_{X_2}\left(\frac{t-b}{a}\right)$$

La fonction F_{aX_2+b} est alors continue sur $\mathbb R$ et de classe $\mathcal C^1$ sauf peut-être en b.

 $aX_2 + b$ est donc une variable à densité, et sa densité est bien donnée par la fonction proposée.

(b) Il suffit d'utiliser le lemme de coalition.

2. (a) On a donc pour tout $x \in \mathbb{R}$,

$$f_T(x) = \int_{-\infty}^{+\infty} f_{X_1}(x-t) f_{aX_2+b}(t) dt.$$

Le produit des deux fonctions est non nul pour $x-t \ge 0$ et $t \ge b$, *i.e.* t compris entre b et x; ceci n'est possible que si $x \ge b$.

On a donc directement $\forall x < b, f_T(x) = 0.$

Si $x \ge b$, on a alors

$$f_T(x) = \int_b^x \lambda e^{-\lambda(x-t)} \frac{\lambda}{a} e^{-\frac{\lambda}{a}(t-b)} dt$$
$$= \frac{\lambda^2}{a} e^{-\lambda x} e^{\frac{b}{a}\lambda} \int_b^x e^{-\lambda t \left(\frac{1}{a}-1\right)} dt$$
$$= \frac{\lambda}{1-a} \left(e^{-\lambda(x-b)} - e^{-\frac{\lambda}{a}(x-b)}\right)$$

(b) Les valeurs $a = \frac{1}{2}$ et b = 0 conviennent clairement.

On note ensuite que si Z_2 et T ont la même loi, elles sont même espérance et variance, et donc

$$\frac{3}{2\lambda} = \frac{1+a}{\lambda} + b \text{ et } \frac{5}{4\lambda^2} = \frac{1+a^2}{\lambda^2}.$$

On en déduit alors que nécessairement, $a=\frac{1}{2}$ et b=0, ce qui démontre l'unicité.

3. (a) Par linéarité, on a $\mathbb{E}(T_p) = \sum_{k=1}^n \frac{1}{k\lambda}$, et par indépendance, $\mathbb{V}(T_p) = \sum_{k=1}^n \frac{1}{k^2\lambda}$.

La série harmonique étant divergente, la suite $(\mathbb{E}(T_p))$ diverge, et la série $\sum \frac{1}{n^2}$ étant convergente, la suite $(\mathbb{V}(T_p))$ converge.

(b) On note que par la question C1a, la variable $\frac{1}{k}X_k$ admet pour densité

$$f_{\frac{1}{k}X_k}(t) = \left\{ \begin{array}{ll} \lambda k e^{-\lambda k t} & \text{si } t \geqslant 0 \\ 0 & \text{si non} \end{array} \right..$$

Montrons ensuite par récurrence que T_p a bien la densité donnée.

- On a $T_1 = X_1$, et donc bien le résultat voulu.
- Supposons que T_p admet la densité proposée. Alors T_p et $\frac{1}{p+1}X_{p+1}$ sont indépendantes par lemme de coalition, et donc T_{p+1} admet bien une densité.

Il est clair que cette densité est nulle sur \mathbb{R}_{-} , les X_k étant des variables positives.

Par produit de convolution, on a alors

$$f_{T_{p+1}}(x) = \int_{-\infty}^{+\infty} f_{\frac{1}{p+1}X_{p+1}}(x-t) f_{T_p}(t) dt$$

$$= \int_{0}^{x} \lambda(p+1) e^{-\lambda(p+1)(x-t)} \lambda p e^{-\lambda t} \left(1 - e^{-\lambda t}\right)^{p-1} dt$$

$$= p(p+1) \lambda^2 e^{-\lambda(p+1)x} \int_{0}^{x} e^{\lambda t} \left(e^{\lambda t} - 1\right)^{p-1} dt$$

$$= \lambda(p+1) e^{-\lambda x} \left(1 - e^{-\lambda x}\right)^{p}$$

On a donc bien la densité voulue.

Finalement, par récurrence, on a le résultat cherché.